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quent thank yous.
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that I needed a holiday to rest from the hard work on my Master’s thesis. Actually, I

agreed, and luckily Jaco and Michael as well. This short holiday ensured that my first

working day as a PhD coincided with the Dutch Model Checking Day 2009 (DMCD)

organized that year by Jaco and Michael at the University of Twente. Attending the

symposium certainly gave an inspiring start to my career.
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Abstract

Our modern society relies increasingly on the sound performance of digital systems.

Guaranteeing that these systems actually behave correctly according to their specifica-

tion is not a trivial task, yet it is essential for mission-critical systems like auto-pilots,

(nuclear) power-plant controllers and your car’s ABS.

The highest degree of certainty about a system’s correctness can be obtained via

mathematical proof, a tedious manual process of formally describing and analyzing the

system’s behavior. Especially the latter step is tedious and requires the creativity of

a mathematician to demonstrate that certain properties are preserved under the strict

mathematical rule system. With the invention of “model checking”, this part of this

process became automated, by letting a computer exhaustively explore the behavior of

the system.

However, the size of the systems that can be “model checked” is severely limited

by the available computational resources. This is caused by the so called state explo-

sion, a consequence of the fact that a machine can only perform small mechanized

computations and does not exhibit the creativity to make generalizing (thinking) steps.

Therefore, the goal of the current thesis is to enable the full use of computational power

of modern multi-core computers for model checking. The parallel model checking pro-

cedures that we present, utilize all available processor cores and obtain a speedup pro-

portional to the number of cores, i.e. they are “scalable”.

The current thesis achieves efficient parallelization of a broad set of model checking

problems in three steps, each described in one part of the thesis:

First, we adapt lockless hash tables for multi-core, explicit-state reachability, the

underlying search method that realizes the exhaustive exploration of the system’s be-

havior. With a concurrent tree data structure we realize state compression, and reduce

memory requirements significantly. Incremental updates to this tree further ensure sim-
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ilar performance and scalability as the lockless hash table, while the combination with

a compact hash table realizes small compressed sizes of around 4 bytes per state, even

when storing more than 10 billion states. Empirical evidence shows that the compres-

sion rates most often lie within 110% of this optimal.

Second, we devise parallel nested depth-first search algorithms to support model

checking of LTL properties in linear time. Building on the multi-core reachability, we

let worker threads progress semi-independently through the search space. This swarm-

based technique leverages low communication costs through the use of optimistic, yet

possibly redundant work scheduling. It could therefore become more important in fu-

ture multi-core systems, where communication costs rise with the increasing steepness

of memory hierarchies. Experiments on current hardware already demonstrate little

redundancy and good scalability.

Third, to support verification of real-time systems as well, we extend multi-core

reachability and LTL checking to the domain of timed automata. We develop a lockless

multimap to record time-abstracted states, and also present algorithms that deal with

coarse subsumption abstraction for the verification of LTL for solving larger problem

instances. The scalability, memory compression and performance are all maintained

in the timed setting, and experiments therefore show great gains with respect to the

state-of-the-art timed model checker uppaal.

The above techniques were all implemented in the model checking toolset LTSmin,

which is language-independent, allowing a direct comparison to other model checkers.

We present an experimental comparison with the state-of-the-art explicit-state model

checkers spin and DiVinE. Both implement multi-core algorithms, while DiVinE also

heavily focuses on distributed verification. These experiments show that our proposed

techniques offer significant improvements in terms of scalability, absolute performance

and memory usage.

Current trends and future predictions tell us that the available processing cores in-

crease exponentially over time (Moore’s Law). Hence, our results may stand to gain

from this trend. Whether our proposed methods will withstand the ravages of time is to

be seen, but so far the speedup of our algorithms has kept up with the 3-fold increase in

cores that we have witnessed during this 4-year project.
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1
Introduction

The topic of the current thesis is the improvement of methods for establishing correct-

ness and identifying faults in digital systems, both software and hardware. The current

chapter provides an introduction to this topic which is mainly written for other computer

scientists, but which should be understandable for a broader technically oriented audi-

ence. Section 1.1 illustrates the importance of correctly functioning digital equipment

in our modern society, while Section 1.2 goes on to show that technological advance-

ments make these systems rapidly more complex, thereby increasing the challenge to

guarantee their correctness.

Next, Section 1.3 outlines the field of Formal Methods, which aims at establishing

mathematically rigorous methods that guarantee dependability for (software and hard-

ware) systems. The thesis focuses in particular on a technique called model checking,

which given a formally stated requirement, fully automatically establishes correctness

of a system, or if the system is buggy, returns a counterexample that can be used for

reparations. Section 1.4 studies this method therefore in more detail.

The benefit of model checking is that it delivers mathematical proofs in a completely

mechanical fashion: The procedure can be implemented as a (software) tool, a so-called

model checker, which takes the system-under-development as input and can be run by

any system engineer, whether expert mathematician or mathematical illiterate. The

downside, on the other hand, is that the systems that a model checker can handle are

severely limited in size by the available computational resources. Therefore, the goal of
the current thesis is to enable the full use of computational power of modern multi-core
computers for model checking. Section 1.5 outlines this goal and its subcomponents in

more detail.

Multi-core processors are quickly becoming ubiquitous because efforts to speedup
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1 computers by increasing their clock frequencies have halted the past decade due to phys-

ical limitations. Section 1.6 explains this trend and studies the real challenge behind

leveraging the power of multi-core processors. It identifies both conceptual difficulties,

e.g. the model checking task has to be split up in multiple, more-or-less independent

tasks, and technical ones, e.g. modern hardware provides limited memory bandwidth

and is hard to program correctly and efficiently.

Nonetheless, the current thesis provides proven, scalable solutions for many impor-

tant disciplines in the field of model checking. These contributions are summarized in

Section 1.7. Finally, Section 1.8 provides an overview of the contents and a reading

guide for the current thesis.

1.1 The Societal Impact of Failing Digital Systems

In 1994, Intel released its latest and fastest Pentium processor. Shortly after, the interna-

tional media reported the discovery of a bug in its calculation of floating point numbers.

After mounting public pressure, the company was forced to recall the chips, leading to

an estimated write-down of almost half a billion dollars [Unk95], not to mention a loss

of goodwill. This news event provides a good example of the financial stake that com-

panies have in producing digital systems on a massive scale. Especially considering the

fact that only a small percentage of customers decided to go through all the hassle of

sending back their processors for the mere problem that it introduces an error in only 1

out of 9 billion floating point division calculations [Hal95] (a defect that probably only

affects scientific experiments and not day-to-day office applications and probably not

even computer games).

Four years later, in December 1998, NASA send its Mars Climate Orbiter onto a

voyage through outer space of 9 months towards the red planet. Upon arrival the $125

million spacecraft promptly disintegrated in the planet’s atmosphere. It turned out that

the NASA crew communicated with the craft using US customary units, whereas its

software “spoke” the international system of units [Ste+99]. This simple mistake not

only wasted a lot of money, it also set back the clock on progress in space exploration by

several years. Unfortunately, the example represents only a single failure in a long string

of at least 10 space exploration missions that either failed or seriously under-performed

due to software bugs [Joh13].

The worst examples on the societal cost of failing devices involves those that our life

actually depends on, the so-called safety-critical systems. Luckily, the practice shows

that usually we can depend on the most crucial systems, like autopilots in airplanes, air-

traffic guidance systems at airports, board computers that control car engine acceleration

and braking, etc. At the bottom-line these systems make our modern fast-paced lives
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1.2 Parallelism and Moore’s Law

safer. However, as these electronic systems become more pervasive, our dependence on
them rapidly increases.

Several unfortunate examples remind us of the risks involved. A failing acceler-

ation control system in cars of a certain maker, may have resulted in 37 deaths since

2000 [Hea11], forcing the manufacturer to pay over $1 billion in damages and re-

call over 8 million sold cars [Zal11]. Other horrendous examples resulting with fatal

consequences include: X-ray machines delivered too high radiation dosages [LT93],

a race condition triggered in an energy management system caused a two day power

outage across large swaths of the north-eastern USA [Pou04], and a round-off error

caused Patriot missiles to malfunction which then failed intercept an incoming Iraqi

missile [Ske92].

This short historical review of malfunctioning digital equipment constitutes only a

small portion of the accidents that became public. And as companies and governments

often tend to hide such problems behind the curtains, we may reasonably expect that

this is just the tip of the iceberg. Moreover, human behavior quickly adapts to the newly

available technology. For example, we pack our bags according to the weather report

on our smart phone, and few people ever still bring blankets on long (car) rides to guard

for strong weather. So not only are digital systems becoming omnipresent, we also tend
to become more reliant on them in our day-to-day lives.

All these developments, in conclusion, call for mathematically rigorous methods for

the verification of correctness of digital systems.

1.2 Parallelism and Moore’s Law

The expanding influence of digital systems also led to aggressive investment in their fur-

ther development. Large companies, such as Intel
TM

, AMD
TM

, and ARM
TM

, were able

to manufacture ever faster processor microchips by reducing the sizes of the transistors

on the chip’s surface. Some economists maintain that these technological advances are

at the basis of economic progress over the last decades [Hut09; MD13] and even that

the death of the law could cause economic downturn [Dun11]. The flip-side of this de-

velopment is that these processors become more complicated by the year, which in turn

increases the difficulty of programming these devices and the likelihood of the presence

of bugs in both hardware and software.

Moore’s law [Moo65] stipulates that the number of transistors on a chip doubles ev-

ery 18 months. This law has held for almost 5 decades after the Intel founder originally

coined it. Recent news indicates however that processor manufacturers need to over-

come ever larger problems because the structure of the transistors, measuring currently

only 8 nanometer in extremes [Cou13], is reaching the physical limitations (a silicon
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1

Figure 1.1: Moore’s law in practice: Since 2002, CPUs stopped getting exponentially

faster as shown by the the MHz line and sequential SPECint benchmark line (1 CPU).

Instead, they only become linearly faster and only got 4x faster in 10 years. Also since

2002, however, the number of cores in the systems has increased exponentially. (Taken

from [App13])

atom is 0.2 nm in diameter). However, according to many industry experts the law will

hold at least for the following decade.

Some believe erroneously that Moore’s law is already dead, due to the fact that

processor frequencies have plateaued in the previous decade (see Figure 1.1). However,

an increase in clock frequencies is merely a consequence of Moore’s law. The increase

in transistor counts can equally well be used for additional parallelism. Hence in the past

decade, we also witnessed an exponential increase in the number of processor cores.

The downside of this development is that the free lunch is over, in the sense that

our algorithms do no automatically profit from the next generation of processors (an

exponential gain). Therefore, these algorithms need to be parallelized. However, par-

allel programming again adds more complexity. It is well known that the complexity

of sequential computer programs can be daunting for even the best programmers, be-

cause she needs to consider all the possible states that her program can be in. Adding

parallelism makes matters worse. As each parallel thread can be at any state in the

computation, the number of different states exponentially increases with the number of

threads. Often a few threads in a simple procedure already increase complexity beyond
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our immediate understanding. Depending on the experience of the programmer, project

organization, and programmatic abstraction, software is known to contain at least a few

bugs per thousand lines of code. Many systems consist of millions of lines of code.

1.3 Formal Methods

As a branch of computer science, formal methods is concerned with mathematical tech-

niques for the specification, development and verification of software and hardware sys-

tems. Its primary aim is to establish ways to conceive these systems in such a way that

they guarantee their stated requirements in all circumstances. A secondary aim is to

establish certain quantifiable characteristics of the system in order to optimize them.

For example, to determine probability of failure of the system, so that it can be opti-

mized to achieve the highest possible dependability [Bai+03; BCS07; Bou+08]. But a

system can also be analyzed using some cost metric, such as its power consumption,

throughput, or memory use [AFS04; Tim13].

In the current thesis, we focus solely on verification of correctness, and do not treat

the latter, so-called quantitative verification methods. In this case, correctness means

the complete absence of errors, i.e. violations of the stated requirements. Verifica-

tion therefore distinguishes itself from testing [MSB11; Luo01], which merely tries to

identify errors in a system by trying as many of its execution paths as possible. Even

formal approaches to testing [Tre99; BBS06] do not guarantee that errors cannot occur

on some obscure, untested path that might happen in practice (for example if the sys-

tem runs a very long time, or if its environment changes in some way unforeseen by

the test cases). Verification on the other hand provides a formal proof that the system
is correct with respect to the stated requirement, i.e. that all possible behavior of the

system respects the requirement. But there is another, more subtle difference between

testing and formal verification techniques. While testing allows for the inclusion of the

system’s complete environment, verification does so only in a limited sense, because it

requires that all behavior is formally specified. However, this does make the verified

behavior explicit, in contrast to testing where any input from the environment might be

accidental [Rom99].

In the previous section, we saw the importance of verification for the users ofmission-

critical and safety-critical systems. For a further discussion of verification methods, it

might be useful to discuss how a formal approach to correctness is just as important

for the system developers themselves. As systems grow increasingly complex with the

exponential growth rates in processor speeds and memory sizes (Moore’s law was dis-

cussed in Section 1.2), it becomes less feasible for a programmer or circuit designer to

maintain an understanding of the complete system that is being developed. A layman
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1 may view these engineers as wizards with magic abilities, research however suggests

that they are just as limited by their cognitive abilities [SM79], which in turn is famously

limited by short-term memory that can track around seven objects at a time [Mil56].

To overcome these cognitive limitations, there is a continuous trend to increase

the level of abstraction in programming languages. Despite early objections from for

instance von Neumann, the father of the modern stored-program computer architec-

ture, who became infuriated at his student’s attempt to create the first assembly lan-

guage [LL95], imperative languages quickly gained ground with FORTRAN [Bac78].

Later, with Java and .NET, strictly typed languages have become more dominant. The

same trend can be witnessed for hardware specification languages, e.g. [Baa+10]. One

could argue that the functional languages, with their closer correspondence to a mathe-

matical description, would be the logical next step. Indeed, in practice this shift seems

ongoing with e.g. the introduction lambda expressions in the Java language.

From the Curry-Howard correspondence [CF58; How80], we know that type sys-

tems are a kind of proof systems, so in a sense programmers are already delivering

limited proofs for the code they write: types deliver a proof that the computed value

is of the correct kind. The above brief history therefore demonstrates the necessity of

formal methods in system development.

The next step to a complete proof system would be to prove that the computed re-

sult has the right value. Such a full proof system is realized by the first verification

method that we discuss now: In proof carrying code [Nec02] (PCC), types are in effect

replaced by proofs, forcing a programmer to provide a mathematical specification of

the computed value at each step of the computation (for each return value / for each

assignment), which can be checked by the compiler. Making proofs a first-class citizen

of the language of course has the downside that it puts the burden of writing these often

long proofs completely on the shoulders of the programmer.

Static analysis, another verification technique, employs a similar, but coarser way,

to include proofs in the source code. Code is often annotated (second-class citizen)

on the level of functions. The variants of this approach are too numerous to list and

evaluate here. Assertion-based reasoning could be considered an early version of static

analysis, and includes the predicate logic suggested by Hoare [Hoa69], which could be

used in assertions and also inspired Dijkstra to come up with a guarded-command lan-

guage [Dij75]. More modern examples use separation logic [ORY01; IO01] or abstract

interpretation [CC77]. Verifast [JP08] is an example of a successful static analysis tool.

Theorem provers, on the other hand, separate the proof obligations completely from

the code by expressing them in a functional formalism, which allows an automated way

to discharge them. These tools have a long history with early successes [DLL62], and

recent tools like Isabelle/HOL [PW02] have proved valuable for the machine-based ver-

ification of a large set of algorithms and mathematical theorems [Sut09]. Recently, they

8



1

1.4 Model Checking

are also used to generate executable code from the proof specification to automatically

derive a correct functional program [Esp+13].

Finally, model checking could be considered the most automated method of verifi-

cation. It operates under the assumption that the system under verification has a finite

number of states, or configurations, which can be modified through (internal) execution

steps, or state transitions, in the system. Themethod then explores all reachable states to

find states or traces (execution paths) that violate the requirement in question. This way,

it mechanically checks whether a system M is a model of a property ϕ , or stated mathe-

matically: M |= ϕ . The requirement needs to be stated in some concise formalism. The

system is often also expressed in a more mathematical formalism, e.g. a process alge-

bra [Gro+08] or some domain-specific language [Hola]. However, in software model

checking [HS99; JM09; BNR09], the implementation of the system is used directly in

the verification process, lowering the entry threshold for users significantly.

The exhaustive exploration of all reachable states, makes model checking a com-

pletely automated method for proof derivation. It is therefore the topic of the cur-

rent thesis.

1.4 Model Checking

Figure 1.2 shows the workflow in model checking. The model checker tool is repre-

sented as a box. It takes as input a formal description of the requirement (ϕ), which

we will call the property, and a formal description of the system (M), which can be

modeled in some concise specification language. It is often pointed out that the mere

task of formalizing property and system in this way already improves the engineer’s un-

derstanding of both system and requirements (represented by the cloud-shaped nodes

in the diagram), potentially eliminating existing inconsistencies upfront [BK08, Sec-

tion 1.1]. In the literature, this formalization process is often referred to as “model-

ing” the system/property, though this somewhat inaccurately describes the originally

intended meaning of the mathematical ‘model of’ relation as described in the preced-

ing section [Cla08]. The formalization is often done manually, but can be automated

for example by translating the system [Cla08] or by using its implementation directly

as done in software model checking.
Depending on the nature of the system-under-verification, different languages are

used to formalize its behavior. Software systems, such as communication protocols

and controllers, can be expressed using (extended) state machines (to which about any

programming language can easily be translated). If the system includes crucial timing
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Figure 1.2: The workflow in modelchecking

behavior, e.g. a real-time system, or interacts with analog physical components, e.g. a

thermostat, it can be modeled using timed automata, or their superset: hybrid automata,
which model this behavior using continuous variables, e.g. clocks. Probabilistic and

stochastic behavior can be expressed using probabilistic automata. For all of these

types of systems, multiple alternative formalisms exist, e.g.: timed Petri nets [Ram74],

timed process calculi [BB91] and probabilistic process algebras [Tim13].

Via exhaustive exploration of the system’s state, while taking into account the se-

mantics of the property, the model checker can prove the system’s correctness, or more

precisely that the system is a model of its requirements: M |= ϕ . If the opposite however

is true, there exists some state in the system or some execution through the system, that

violates a stated requirement in the form of a property. In this case, a nice feature of the

model checker is that it is able to deliver a counterexample in the form of an execution

trace. The counterexample can then be used to improve the system specification and/or

the property (the latter is not drawn in the figure).

A distinction is oftenmade between safety and liveness properties. Safety properties

state properties of the kind: “nothing bad ever happens”. While liveness properties

also reason over (infinite) paths: “eventually something good happens” [BK08]. Since

safety properties reason over individual states and actions, it suffices to find a finite

trace in which the property is violated to demonstrate that the property does not hold.

Many simple safety properties, such as deadlocks and invariants, can be checked by
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establishing reachability of states in which these properties are violated (which can be

checked locally on a state). Liveness properties, on the other hand, require a more

complicated analysis.

To express liveness properties several logics were developed. It is still up for de-

bate which is the best suitable for model checking [Var01]. The computational tree
logic (CTL) is a branching-time logic that expresses properties over some or all paths
in the system [BK08, Chapter 6]. The problem of CTL model checking was shown to

be linear time in both the size of the system |M| and the size of the property |ϕ| [EL87].
While linear temporal logic (LTL) on the other hand, expresses properties over all paths
and is linear in |M|, but exponential in |ϕ|. However, many properties of interest can be

expressed exponentially shorter in LTL [BK08, Chapter 6]. Moreover, the expressive-

ness of LTL and CTL are incomparable, i.e. both languages contain properties that are

inexpressible in their counterpart [BK08].

To overcome the limitations of CTL and LTL, several other languages have been

invented. CTL* is a branching-time logic that expresses a superset of both LTL and

CTL. The modal μ-calculus expresses a far broader set of properties, but its general

checking procedure is also more complex than LTL [Eme97]. Although the subset of

the μ-calculus needed to express LTL properties can be checked as efficiently as LTL

itself [CGR11] and also on-the-fly [MS03], there are still important advantages to LTL-

based model checking: compositionality of formulae, understandability of formulae,

and its automata-theoretic approach [Var01].

1.4.1 An Archeology of Model Checking

Recounting Edmund E. Clarke’s “The Birth of Model Checking” [Cla08], we find that

the earliest exhaustive state exploration techniques can be traced to Bochmann [Boc78],

who used it for the verification of protocols. Around the same time, Holzmann also

worked on similar methods for concurrent system and protocol verification [Holb],

which were not implemented until 1980 [Hol81].

The novelty of the contribution of Clarke, Emerson and Sifakis [CE82; QS82], that

eventually won them a Turing award[CES09], was their combination of exhaustive state

exploration with Pnueli’s [Pnu77] definition of temporal logic. The latter constitutes an
ideal formalism for expressing all kinds of (liveness) properties over program execu-

tions. While Hoare logic from 1969 [Hoa69] only allowed the expression of functional

properties over statements and functions in a program, temporal logic takes entire exe-

cution paths into account.

The EMC model checker, developed by Clarke [CES86], implements an algorithm

that checks computational tree logic (CTL) in time linear to |M| and |ϕ|. Later, the

automata-theoretic approach for LTL checking was developed, replacing the property
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1 with an ω-automaton that expresses infinite paths [VW86]. Both approaches are called

explicit-state model checking, since the state descriptors are represented as raw data, as

opposed to a mathematical (symbolic) description of the system’s states and transitions.

Further developments in model checking allowed larger systems to be verified by

reducing or compressing the exponentially-sized state space. E.g., partial-order reduc-

tion [Ove81; Val88; KP88a; God90] was introduced to prune traces from the transition

system that are not of interest to the property that is being verified. It can yield exponen-

tial reductions [Val98]. McMillan [McM92] used binary decision diagrams [Bry86] to

symbolically represent the transition system (state space and transition relation) con-

cisely. In Section 1.4.3, we detail these and other methods to combat state-space explo-

sion. In the following section, we first illustrate some successful applications of mode

checking.

1.4.2 Model Checking Successes

Model checking was hugely successful. The early EMC tool found bugs in existing

published circuits [Cla08; QS08].

Holzmann is another pioneer in the development of model checkers. His early pan
verifier [Hol81], a predecessor to spin [Hol11], was successful in identifying bugs in

existing protocol specifications [Hol81]. spin was later used to verify the FireWire

protocol [LRG03], subsystems of NASA’sMars rover [HJ04], andmany communication

protocols [Hol90; Hol91].

The model checker murϕ was used to verify cache coherence protocols [Che+07]

and cryptographic protocols [MMS97]. While the process-algebraic model checkers

μCRL [Blo+07] and mCRL2 [Gro+08; Cra+13] were used to verify industrial case

studies and communication protocols.

PRISM [KNP11] solved a large set of (probabilistic) communication, network, and

multimedia protocols. And uppaal was used verify industrial case studies and proto-

cols. PAT [LSD11] showed successes in the verification of sensor networks and real-

time systems.

SLAM [BR01; BR02] won considerable respect in the verification community for

its successful application of symbolic verification techniques to solve the problem of

checking device drivers for Microsoft
TM

Windows. Using related techniques, though

oriented more towards testing, the tool SAGE [GLM+08] “fuzzes” for bugs in a wide

array of Microsoft products. This technique symbolically generates different inputs for

white box testing. It runs 24/7 on very large scale clusters to identify as many faults

as possible in new software releases. This the investment in this expensive effort is

quickly repaid, because each patch release that is avoided, saves the company millions

of dollars.
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1.4.3 Dealing with State-Space Explosion

The exhaustive state exploration technique discussed above, expands the system de-

scription M as a transition system or Kripke structure [Kri71]. Such a structure is the

equivalent of the mathematical definition of a directed graph or digraph, annotated with

additional labels at the vertices and/or arcs (directed edges). Computations of state-

ments or functions in the system constitute the arcs/transitions in the graph/transition

system. These transitions often lead to a new global state in the system under veri-

fication, with different program counters and data values than the source state of the

corresponding transition. We simply refer to the full descriptor containing all these

variable valuations: the state or state descriptor. This term is used as synonymous for

the vertex/ node in the graph / transition system that it is part of.

We call all possible valuations of the variables in a system, i.e. program counters,

communication channels and data variables, the syntactic state space. The number of

reachable states is often only a small subset of the syntactic state space and can be

obtained via the exhaustive state exploration. Therefore, we often simply call this pro-

cedure reachability. Reachability starts at the initial system state and searches for new

states, by executing all possible transitions at a state. To this end, it needs only to store

the stack of the search to avoid infinite repetition in the search as Savitch’s algorithm for

the STCON problem demonstrates [Sav70]. However, the different paths through the

transition system are often so numerous that such an approach leads to exponential com-

plexities (in the number of reachable states and transitions). For this reason, the search

procedure often maintains a set containing all previously visited states. Upon comple-

tion of the reachability procedure, this set then contains all reachable states, which we

will call the semantic state space or simply state space.
For efficient model checking, the state space needs to be stored in main memory.

This memory is fast enough to verify systems in reasonable time, while at the same

time large enough to explore systems of interest. A state space is know to be exponen-

tial in the size of the system, i.e. the number of (parallel) components, data variables

and channel buffers. Moreover, a property can also be exponential in the size of the

predicates it contains and is often combined with the state space using some cross prod-

uct procedure, leading to even larger state spaces. Therefore, dealing with state-space
explosion is the most important problem in model checking.

1.4.3.1 Explicit-State Techniques

The main dichotomy in model checking approaches is between explicit and symbolic

techniques. In the explicit approach, the reachable states are stored in full, as vectors

containing the data values of the variables in the system, while the symbolic approach
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1 uses mathematical equations to represent entire sets of states. The preferable approach

depends on the nature of the input system: hardware systems and other systems with

high parallelism tend to be handled effectively with symbolic approaches, while soft-

ware systems usually are better verified using explicit approaches.

On-the-fly exploration. The main advantage of the explicit approach is that states

are processed individually, so the search can be limited to relevant parts of the state

space. The so-called on-the-fly exploration in automata-theoreticmodel checking [VW86]

synchronizes the state-space exploration with the steps in the automaton representing

the property. When the system contains bugs, the exploration can stop upon detecting

a counterexample, saving computational resources to explore (and store) other parts of

the state space.

State compression. To reduce the memory requirements for model checking sys-

tems with large state descriptors, we can compress states. One option is to apply lossy

compression and only store one ormultiple hash values per state in a hash table [GVR99;

WL93; DM09] or a Bloom filter [DM04]. The downside however is that these ap-

proaches, i.e. supertrace/bit-state hashing [Hol98] and hash compaction [GVR99], sac-

rifice the typical completeness property of model checking. In the case of liveness

verification, soundness is also problematic [BHR13].

State-space caching. To improve upon the previous methods, a model checker can

further attempt to avoid the storage of states in memory completely by heuristically

caching only parts of the state space. A trivial technique is to employ depth-first search

(dfs) and only store the stack [Sav70] (as opposed to storing all visited states). This

may result however in exponential runtime. Therefore, the dfs technique is often com-

bined with state-space caching [GHP95]. Better heuristics can aid the effectiveness

of the caching, for example by focusing on states that form entry points of cycles in

the graph [BLP03]. With proper heuristics, the technique can even be used without

its dependency on dfs [BLP03; MW09] (accomplishing completeness by guaranteeing

progress).

Alternatively, to avoid state revisits, the visited states can also be off-loaded to the

much slower hard disk [SD98]. By heuristically selecting states that are encountered

less often, the performance penalty can be minimized [Pen+02].

Both techniques can also be combined [HW07].
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1.4.3.2 Symbolic Techniques

With their ability to exponentially reduce the size of the state space by expressing large

sets of states using simple mathematical formulae, symbolic techniques greatly con-

tributed to solving the state-space explosion problem. However, they may also increase

the size of a state space exponentially if its structure is not combinatorial, so they must

viewed as an orthogonal approach to explicit-state model checking.

Binary Decision Diagrams. One way to mitigate the state-space explosion is to

symbolically represent subsets of the syntactic state space using (reduced and ordered)
binary decision diagrams (BDDs) [Bry86]. However, BDDs only efficiently support

set operations, and have horrible performance for adding single states, as the model

checking procedure as described above, demands. Therefore, the transition relation

also needs to be expressed symbolically [McM92]. The downside is this somewhat

limits the input language of the model checker to reflect the relational nature of the

transitions. Moreover, some arithmetical operations, such as multiplication, are there-

fore more expensive. However, BDD-based symbolic model checkers [Bur+90], such

as NuSMV [Cim+02] still enjoy huge successes due to their suitability for checking

highly-parallel systems, such as hardware.

Despite slow BDD updates, some explicit-state model checkers still employ BDDs

to compress the state space [Gre96; Vis96; HP99]. The model checker LTSmin uses the

same approach, but mitigates the resulting runtime penalty by learning the partitioned
transition function in a piecemeal fashion [BPW10; BPW09].

Boolean satisfiability. The contribution of Davis and Putman [DP60] in 1960 re-

sulted in a revolution in (Boolean) satisfiability solvers (SAT). Eventually these solvers

where used for model checking [Bie+99b; Bie+99a; Bie+03; DKW08], by generating a

propositional formula that described executions of the system-under-verification up to a

bounded length k. The method was later greatly improved using an inductive on-the-fly

generation of the transition relation by Bradley [Bra11].

For software systems, it is often infeasible to express the state transitions as a Boolean

formula because the use of large data variables, together with their arithmetic opera-

tions, are expensive to express using only Boolean connectives. For this purpose, re-

searchers have sought to solve the “satisfiabilitymodulo theory” (SMT) problem [NOT06],

which is essentially the SAT problem extended with predicates from different, higher-

level theory. The theory can be either (fixed-sized) bit-vectors, natural numbers, real

numbers, etc. SMT solvers have successfully been used in the model checking proce-

dure [AMP06].
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1 While the successes of boundedmodel checking quickly replaced BDD-basedmeth-

ods, the methods should be considered complementary, as there are problem instances

which can be solved efficiently with either BDDs or SAT, but not with both [GZ01].

1.4.3.3 Orthogonal Techniques

Some general state-space reduction methods can be applied, regardless of whether we

employ symbolic or explicit techniques.

CounterExample-Guided Abstraction Refinement. CounterExample-Guided Ab-
straction Refinement (CEGAR) [Cla+00] uses over-approximating abstractions to mit-

igate the state-space explosion. Upon detection of a counterexample, its feasibility is

checked in the original system. When the counterexample is infeasible, the abstrac-

tion is refined (possibly locally) and the checking process is reiterated. This technique

is more naturally expressed using symbolic techniques [Cla+00; CGS04; Cla+02], but

can also be used for explicit and hybrid systems [BL13b; Cla+03].

Partial-order and confluence reduction. Independence and commutativity between

transitions in concurrent systems can be exploited with partial-order reduction (POR)

[Ove81; Val88; Val89; KP88a; God90]. Exhaustive verification needs to consider only

a subset of all possible concurrent interleavings, without losing the global behavior of

interest to the verified property. In practice, the state space is pruned by considering a

sufficient subset of successors in each state.

A a related approach is confluence reduction [BP02], which achieves the same goal.

For probabilistic systems with branching-time logics [TSP11], confluence reduction

was shown to deliver reductions at least as good as POR.

Partial orders have been shown to be crucial for feasible solutions to the model

checking problem of systems with relaxed-memory semantics [AKT13].

Symmetry reduction. Symmetry reduction [NIPD96; Cla+96; ES96] prunes in-

terleaving behavior of identical system components by using an equivalence relation

over state descriptors induced by permutation groups (of the identical components).

Partial-order reduction can be considered orthogonal to symmetry reduction, because

both approaches leverage reductions from different aspects of the system [EJP97]. Wahl

et al. [EW05] developed dynamic symmetry reduction to extend the approach to systems

with imperfect symmetries.

16



1

1.4 Model Checking

1.4.3.4 Language-Specific Techniques

Some approaches to combat state explosion have been developed for specific specifica-

tion languages. For example, McMillan [McM93] defined an unfolding technique for

Petri nets, a formalism ideally suitable for specifying parallel systems, which avoids the

exponential explosion caused by exhaustive exploration. The technique can be adapted

for use in other formalisms, such as synchronous products of labeled transitions sys-
tems, although its details may depend on the formalism to which it is applied [EH08].

Other examples involve the symbolic relation induced by the time-abstracting constraint

systems for finite representations of timed automata (TA) [Dal+11].

1.4.3.5 Techniques using Parallelism

Finally, we can also choose to increase the amount of hardware resources dedicated to

solving a model checking problem. The availability of large- scale computing clusters

makes it possible to distribute the problem over individual machines and communicate

results via a network (LAN orWAN). The machines themselves can be scaled to contain

multiple processors or even multiple processor cores on a single chip.

Distributed systems. Distributed systems have a long history of being used for

model checking. The benefit of this approach is that the available memory increases

linearly with the number of machines used. A difficulty is however to split the model

checking problem in such a way, so that the communication among those machines is

minimized.

Symbolic approaches have been distributed by Grumberg at al by splitting BDDs

using a so-called window function [BD+00]. The added benefit was that in some cases

the BDDs tend to reduce in size due to their partitioning, as other experiments seem to

indicate [GHS01]. Other works investigate the distribution of timed automata, which

express systems with real-time behavior [Beh05; BHV00].

Explicit-state model checking has been distributed with the work on spin [LS99],

murϕ [SD97; Bin+10], CADP [Gar+07; GMS12], Groove [BKR10] and DiVinE [Bar+10;

Bar+06]. Other (language-independent) distributed approaches that use state compres-

sion techniques to reduce network traffic [Blo+08a]. The size of the distributed state

space can be further reduced using distributed bisimulation reduction algorithms [BO03;

BO05].

Multi-core and multi-processor systems. More recently, multi-core and multi-

processor systems are becoming more prevalent, as discussed in Section 1.2. These

systems share the main memory subsystem between all the available processing cores.
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1 Communication is therefore not as expensive as in the distributed case, but also less

transparent because thememory is presented as a single virtual address space to the user-

space programs (see Section 1.6). Model checkers can benefit from the performance of

multi-core processors [BBR09b; HB07; Hol08; IB02; BR08]

The current thesis focuses exclusively on methods to speedup the model checking

procedure for multi-core and multi-processor systems. We do however also con-

sider combinations with other techniques that deal with state-space explosion, such

as partial-order reduction as discussed in section Section 1.5. Section 1.6 explains

the intricacies of parallelism.

1.5 Scalable Multi-Core Model Checking

1.5.1 Problem Statement

Asmentioned above, the model checking procedure is severely limited by the (exponen-

tial) state-space explosion. At the same time, the method does not exploit the increasing

amount of parallelism of modern multi-core processors. To benefit from the exponen-

tial performance increase of each next generation of processors, model checkers need

to be parallelized.

1.5.2 Limitations and Existing Contributions

Prior to the commencement of the research project that led to the current thesis, a few

researchers had already recognized the importance of this approach and proposed par-

allel solutions for model checking on shared-memory machines.

Brim, Barnat and Ročkai [BBR09b] implemented a parallel model checker DiVinE

for multi-processor systems. Their results were promising, but unfortunately the run-

time of some of their parallel algorithms could become quadratic in theworst case, while

their sequential counterparts remain strictly linear-time. Furthermore, the algorithms

exhibit limited scalability on multi-core systems.

The spin model checker also saw several attempts to revise its algorithms for multi-

core machines [HB07; Hol08]. A wise choice was made here to maintain as much back-

ward compatibility with earlier implemented algorithms. Unfortunately, little speedup

was obtained. Inggs and Barringer [IB02] present a way to parallelize reachability us-

ing an imprecise state store. The work resulted in reasonable speedups on older SGI

machines, but the method is inherently unsuitable to support liveness algorithms like
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owcty, because the correctness of such algorithms depends strongly on precise state

counting arguments.

Specific solutions for shared memory machines with shared state store where not

investigated to satisfaction. Some researchers therefore were convinced that scalable

parallelization of model checking operations was limited to input with large data sizes

(state vectors), long transition delays (next-state computation) and high branching fac-

tors [HB07; Hol08]. Others believed that the right algorithm/implementation has yet to

be invented [BR08].

Researchers agreed that parallel linear-time algorithms for checking LTL properties

remained an important open problem [HB07; BBR10b].

1.5.3 Research Questions

In the first place, we want to realize efficient procedures for parallel model checking

on multi-core machines. The ideal to strive for is obviously a speedup that equals the

number of cores used. If this a not attainable, at the least a linear speedup would pro-

vide some indication that the algorithm will also scale beyond the number of currently

available cores. We therefore ask the following research question:

Main research question

Can the model checking procedure scale, linearly or ideally, on modern multi-

core machines?

We interpret model checking in the broad sense and aim at supporting different spec-

ification languages and properties. Some specification languages, like timed automata,

add symbolic properties to the state space and therefore require different algorithms.

Furthermore, the verification of liveness properties requires different algorithms than

the safety properties because these reason on paths in the state space. All these different

algorithms need to be parallelized individually.

The inherent difficulty of parallelism demands that we require some proof of correct-

ness for new algorithms and/or data structures. At the very least these proofs should be

on the higher algorithmic level, where we can easily reason about mathematical prop-

erties. For data structures, a limited implementation with some abstraction could be

model checked to provide some confidence in their correctness. We do not require that

the implementation themselves is completely verified, as this is often infeasible. So

concretely, we need to demonstrate correctness:
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1 Subquestion 1

Are our proposed methods for multi-core model checking provably correct?

Finally, a parallel model checker that efficiently uses all the available processors/-

cores is a great tool for dealing with state-space explosion considering the predicted

technological advancements according to Moore’s Law (see Section 1.2). However,

without other techniques, such as partial-order reduction, on-the-fly model checking,

state compression, etc, it can hardly compete with other sequential tools. Therefore, we

should keep an eye on compatibility with these methods:

Subquestion 2

Are our parallel model checking procedures compatible with other existing

approaches to tackle the state-space explosion problem?

1.5.4 Approach

Different model checking problems have different complexities. On the first axis comes

the input specification, which might add complexity to the exhaustive exploration of the

state space. For example, to obtain a finite state space for timed automata a symbolic

abstraction is needed, which complicates the comparison and storage of states [BHV00].

The following enumeration shows different formalisms in their increasing complexity:

1. explicit-state formalisms (spin’s promela [Hola], DiVinE’sDVE [Bar+10], mCRL2’s

process algebra [Gro+08], etc).

2. timed automata (uppaal’s [LPY97] timed automata),

3. hybrid systems [Man+13], and

4. probabilistic systems (PRISM’s probabilistic TAs [KNP11] and Scoop’sMAPA [Tim11]).

Another axis of increased complexity we find in the property specification:

1. Reachability or safety properties,

2. linear temporal logics (LTL) and branching-time logics (CTL), and

3. the modal μ-calculus.
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It is not feasible to try to parallelize all of the above problems at once. We can

however start with finding a solution for the explicit-state exhaustive exploration prob-

lem, or reachability, which already solves many safety properties, such as deadlocks,

for explicit-state systems. In fact, when no efficient solution can be found for paral-

lel reachability, it is also unlikely that we can find efficient solutions for LTL checking

or the checking of timed automata. Therefore, it is crucial that we initially focus on

scalable parallel explicit-state reachability.

From there on, we can focus on more complex problems on both axes, such as LTL

checking and the checking of timed automata. Linear-time solutions for parallel LTL

checking are still an important open problem [HB07; BBR10b], and therefore would

logically be the next goal on the list. From its advantages compared to CTL as outlined

in [Var01] (see also Section 1.4), LTL also seems the logical first choice. Later, we

could also investigate CTL and CTL* logics starting from the algorithms in [Fis+01].

Once the explicit-state case has been solved, the same methodologies can be applied

for the parallel checking of timed automata [Li09], and possibly the more general hy-

brid automata. While distributed versions of uppaal exist [Beh05], their scalability was

only established on decade-old machines, and likely is not preserved on modern multi-

core machines (an implementation is also not available to check this). Furthermore, the

uppaal tool is limited to checking a small subset of CTL. Moreover, the problem com-

bining LTL checking with rigorous time-abstractions is still an open problem [TYB05].

Completely symbolic model checking can be considered last. Because SAT-based

techniques areNP-complete, many (heuristic) approaches are equally valid for different

sets of input problems, making a portfolio-solution a natural fit [Xu+11], as we will

discuss in the following section. Nonetheless, it was recently shown that clause learning

can be shared among the solvers [WH13a; WH13b].

BDD-based structures can be parallelized by distributing them using window func-

tions as discussed at the end of the previous section. For multi-core machines however

it could also be useful to parallelize the individual operations on the BDD structure.

These operations traverse a large directed, acyclic graph (DAG). Therefore, the problem

of parallelizing these BDD operations is similar to that of parallelizing the exhaustive

(explicit) state-space search, though with many more constraints [Bry86]. Hence we

can expect that a successful parallelization of BDD-based model checking depends on

the success of parallelizing the explicit approach.

Due to the different nature of the symbolic approaches to model checking, the par-

allelization of these techniques is likely orthogonal to the parallelization of the explicit-

state techniques, meaning that their solutions will have little in common and can be

considered independently [DLP13].

One requirement for the parallel checking methods is compatibility with the other

state-space reduction methods discussed in the previous section. Without e.g. partial-
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1 order reduction the gains of parallel model checking would diminish greatly. Also state

compression and on-the-fly verification are important capabilities that should be pre-

served. These considerations should therefore be taken into account from the start.

Table 1.1 shows an overview of the large research area that we discussed in the

order suggested in the current subsection. The first column shows the main formalisms,

the second column the different kinds of properties that we discussed, and the first row

the different approaches and some useful reduction techniques that can be applied for an

approach. In the introduction of every thesis part, we will discuss which open questions

are solved in that part based on Table 1.1. In the conclusions, we provide an overview

of the solved open questions (see Chapter 12). To wit: explicit-state reachability and

LTL checking, for explicit and timed specifications, combined with most state-space

reduction methods (areas circled in the table).

Table 1.1: Open questions in the area of multi-core model checking.
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1.6 The Challenges of Parallel Computing

The irony of history is that many research on shared-memory parallel programming

and architectures was already performed in the 80’s but discontinued due to rapid ad-

vancement of efficient sequential architectures. Market-driven development of sequen-

tial chips mainly by Intel and AMD, pushed parallel architectures in the background

and also off many research agendas. Therefore, interesting background materials can

be already decades old (translating to centuries in the field of computer science), but

are becoming more relevant again, e.g. [MCS91].

Recalling this history also gives great insight into the status quo of current parallel

shared-memory architectures. While in the past these systems often had large bus inter-

connects, with often pieces of local memory available to each processor, we encounter

nowadays almost exclusively cache-coherent architectures that provide a single consis-

tent view of memory for each core, pushing the communication in the background by

means of a cache coherence protocol. These concepts are discussed in the following

sections.

The current situation can be explained by the availability and vast usage of fast se-

quential chips and the prevalence of sequential algorithms for these chips. In the old

situation, the burden of parallel programming was entirely on the programmer, but its

functioning was transparent in the form of explicit communication operations. This set-

ting was much closer to the message-passing approaches for distributed programming.

Nowadays, the processor manufacturer has taken on part of the burden of parallel pro-

gramming by providing this single view of memory. Programming these systems is less

involved but also much less transparent.

1.6.1 Parallelism is Inherently Complex

Parallelism is known for its inherent complexity.

The theory. Complexity theory, in the first place, suggests that “feasible” prob-

lems for sequential machines lie within the polynomial-time complexity bound (P), as
a higher-than polynomial upper bound on computation time seems unreasonable given

that computation power grows exponentially [Cob64; DC80]. A similar argument can

be made for the complexity of a parallel algorithm using a polynomial amount of hard-

ware, i.e. circuit size. This suggests that the efficiently parallelizable problems are a

subset of P, since polynomial hardware running for polynomial amount of time can be

simulated by a polynomial-time algorithm [DC80, Sec. 5].

Nick Pippinger [Pip81] came up with a characterization of the circuit size which
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1 turned out to be invariant for different circuit layouts. Since the width of the circuit is

closely related to the amount of parallelism, it is believed that Nick’s class (NC), a term
coined by Cook [Coo79], describes those problems that are efficiently parallelizable. It

is widely believed that P �=NC. In other words, some problems exist that are inherently
sequential (these should necessarily include all the P-complete problems).

In practice, the fact that a problem is in NC means that it may use a polynomial

number of processors solving the problem in poly-logarithmic time. Several points of

critique can be addressed with regard to such a theoretical model [Var11]. First of all, it

is infeasible to scale the number of processors as the model suggests. Second, the def-

inition of a parallel computer in this model is often assumed to be a Concurrent Read-

/Concurrent Write (CRCW) parallel random-access memory (PRAM) machine, which

can perform communication in a single cycle and access all memory equally cheaply.

The practice is far from this model as we will see next. Worse yet, the practice is actu-

ally evolving such that communication becomes more expensive and memory latencies

less constant. Therefore, the current thesis does not emphasize the theoretical aspect
of parallel computation. Although sometimes, we draw from the theory to understand

were the difficult problems may lie, e.g. in Part III, we discuss the inherent sequential

nature of depth-first search (dfs).

Memory hierarchy, latency and bandwidth. A consequence of Moore’s law (see

Section 1.2) is that processor clock frequencies increase faster than memory latency.

This has over time led to very steep memory hierarchies in computers, prompting pro-

cessor manufacturers to include several layers of fast on-chip caches, referred to as L1,

L2 and L3, to make up for a slower main memory (see Figure 1.3). The L2 and L3

caches are often shared among multiple cores in multi-core chips.
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Figure 1.3: Memory hierarchies balance low latency and large memory.
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The roofline model [WWP09; Asa+09] tries to predict an algorithm’s parallel ef-

ficiency by modeling only its memory bandwidth usage and number of operations per

second. The ratio of bandwidth and computation, or algorithmic intensity, is the main

measure in this theory. When the algorithm itself performs fewer computations per

byte of memory it loads than the processor can support, the algorithm will be limited

by the algorithmic intensity that the processor can deliver. This performance model

offers a way of thinking about the efficiency of high-throughput and high-performance

algorithms. For example, it suggests that the memory footprint of a data-intensive algo-

rithm is probably the performance bottleneck on modern machines. In Part II, we use

this heuristic for the design of scalable concurrent data structures.

NUMA architectures. Whereasmulti-core processors communicate via their shared

caches as discussed below, multi-processor systems communicate via the memory bus

as Figure 1.4 illustrates. To reduce memory latency and reduce traffic on the shared

memory buses, multi-processor systems often opt for processor local memory banks

(see Figure 1.4). These so-called non-uniform memory architectures (NUMA) result

in less uniformity in the memory access times. Since programmatically all memory is

presented as one uniform global range, the slowdown of remotely allocated memory is

not transparent to the programmer. Therefore, modern operating systems offer NUMA

libraries that allow to control the allocation across the different memory banks.

Throughout the current thesis, little mention is made of these implementation de-

tails, in order to make room for other results. We also did not find the need to optimize

shared data structures using the NUMA library, as the speedups obtained in our basic

algorithms (reachability) were already close to optimal.

Figure 1.4: Non-Uniform Memory Architectures
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1 Cache coherence. On the practical level of the implementation, cache coherence

is another source of problems. Modern processors have taken the design approach to

make parallel programming resemble the sequential world as much as possible. To this

extent, the available system memory is presented uniformly as one addressable range

Algorithm 1.1 Counting to a billion (sequentially)

1 #define B (1024∗1024∗1024)
2

3 int main (void) {
4 int result = 0;

5 for (int i = 0; i < B; i++)

6 result++;

7 return result;

8 }

Algorithm 1.2 Counting to a billion (in parallel)

1 #define P 16

2

3 static void count (void ∗arg) {
4 int ∗counter = (int ∗) arg;
5 for (int i = 0; i < B / P; i++) ( ∗counter )++;
6 }

7

8 int main (void) {
9 pthread_t thread[P];

10 int counters[P] = {0};

11

12 for (int i = 0; i < P; i++)

13 pthread_create (&thread[i], NULL, count, &counters[i]);

14

15 int result = 0;

16 for (int i = 0; i < P; i++) {

17 pthread_join (thread[i], NULL);

18 result += counters[i];

19 }

20 return result;

21 }
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of bytes, whereas in fact memory is often moved to the core-local or CPU-local L1, L2

or L3 caches. The user cannot control directly what the contents of the cache are. We

illustrate the difficulties that this design causes with an example.

Algorithm 1.1 shows a simple program that solves the problem of counting to a

billion. The same problem is solved in parallel using pthreads in Algorithm 1.2. The

main thread launches 16 worker threads at Line 13 and wait for their completion at

Line 17. Meanwhile, theworker threads each use their own counter (declared at Line 10)

to do a part (1B/16) of the counting at Line 5.

When executing Algorithm 1.1 and Algorithm 1.2 on the same machine with 16

cores, we obtain a runtime of 27 seconds for the first, and 32 seconds for the second

implementation. Our parallelization caused a slowdown!
This slowdown is caused by the cache coherence protocol, which ensures that all

local processor caches reflect the same global state of memory. However, the smallest

unit on which is operates is a cache line, which consist of 64 bytes or more. It turns

out that our array counters lies on the same cache line, which is now sent around to all

processor cores for each count operation. This problem is known as false sharing.

Weak memory models. In order to improve processor speeds, and adhere toMoore’s

corollary that clock frequencies double every few years, manufacturers in the past had

to employ several tricks. At the basis of their methods is a process called pipelining,
where individual instructions are pushed on a processing queue inside the processor

and are completed in a step-wise fashion. With the increasing clock frequencies, the

amount of computation became limited by the depth of the circuit (the distance that the

electronic signals need to travel). Therefore, the operation performed at each step of

the pipeline is small and many pipeline stages are needed to assemble the final result,

sometimes up to twenty-four stages.

This means that the first instruction takes up to twenty-four cycles for completion,

but the subsequent instructions ‘flow’ at the clock frequency. Unless an instruction is

halted due to a slow reference to memory (a cache miss), or a branching instruction

whose result cannot be predicted. To remedy this, many transistors on the processor are

dedicated to predict branches and govern the cache contents.

However, in the course of time these solutions still turned out to be insufficient to

sustain the processor core with useful work. Therefore, processors resort to out-of-
order executions for decades already. This technique allows the slower instructions to

be reordered behind the faster instructions, if they are independent (operate on different

data). For example, a memory load may be reordered behind a memory store or another

load. The weaker the memory model, the more such reorderings are allowed.

Out-of-order executions are invisible to sequential programs, where sequential con-
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1 sistency is maintained, i.e. all instructions appear to be executed in the order in which

they are issued, informally speaking. However, for parallel programs, these out-of-

order executions of remote cores become visible. Thus the methods that were used

for a long time to speedup sequential computation, actually hinder parallel computa-

tion. The result is an often counter-intuitive programming model, which makes mem-

ory contents appear inconsistently across different CPUs, even though cache coherency

presents memory as a single continuous range.

Embarrassing parallelism. The inherent difficulties of parallel computing has led

many to consider embarrassingly parallel algorithms [Var11; HJG08; HJG11; Xu+11].

Embarrassingly parallel solutions use little or no synchronization and thereby are almost

trivially correct (often because several instances of the same sequential algorithm are

run independently in random fashion).

Vardi [Var11] discusses the difficulty of LTL satisfiability checking. All the different

techniques for this problem have their own merits in the sense that they effectively solve

their own subset of problems. For this reason, portfolio-based approaches, where many

different SAT solvers are unleashed on the same problem in parallel, but completely in-

dependently, have shown promising results [Xu+11]. He concludes with the suggestion

that embarrassing parallelism probably offers the best parallelization method, given the

few impressive results from five decades of research on parallelism have delivered.

Embarrassing parallelism in model checking can aid help to locate bugs rapidly, but

cannot speedup complete verification as all worker threads would traverse the whole

state space independently [HJG08; HJG11]. Recently, techniques have been proposed

that aim to remedy this shortcoming by using informed search with limited communi-

cation to prevent many redundant computations [Wij11].

1.7 Contributions

The current thesis contains contributions in 3 areas in the field ofmodel checking. These

correspond to the different parts of the thesis. After discussing these different contri-

butions, we summarize their impact on the scientific community up until the time of

writing of the current thesis (January, 2014).

1.7.1 Scalable Reachability with State Compression

The first main contribution, of scalable multi-core reachability described in Chapter 2,

lies at the basis of all other work contained in the current thesis. Contrary to the belief

of some experts in the field, we showed how reachability can scale almost ideally on
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modern multi-core hardware. We achieved this by exploiting the hardware’s strengths

through the use of a carefully designed shared concurrent hash table with low mem-

ory footprint (as opposed to using distributed algorithms). This design provides both

more flexible load balancing and more flexibility in choosing the search order of the

reachability algorithm, thereby aiding on-the-fly model checking.

The second main contribution is the combination of parallel reachability with effi-
cient and scalable state compression. The core of this work is the replacement of the

concurrent hash table with the concurrent tree data structure that is developed in Chap-

ter 3. Because this structure internally uses the concurrent hash table of Chapter 2, its

scalability is equally good. Furthermore, by incrementally updating the tree, we obtain

similar, often better, runtimes than with plain (non-compressed) hash table storage.

The obtained compression ratio depends greatly on the structure of the state space,

but because it is often highly combinatorial in model checking, it is close to the optimal

of 8 bytes per state regardless of the original state size, which could be thousands of

bytes. (The fixed quantity depends on hardware characteristics that guide the imple-

mentation of the tree.) Extensive experiments indeed demonstrate that in many cases

the optimal compression is obtained.

We further reduce the compressed sizes to almost 4 bytes by developing a concurrent
compact hash table [Cle84] in Chapter 4. The compact table can be used in many other

applications, e.g. in BDDs, and therefore represents a contribution in its own right.

Moreover, its dynamic region-based locking strategy is a novel approach which delivers

fine-grained, yet multi-object, mutual exclusion. In Chapter 11, the combination of the

tree database with compact hash table is discussed and experiments are presented that

confirm the expected compression.

1.7.2 Scalable, LTL Model Checking in Linear Time

Our work on multi-core nested depth-first search algorithms (Mc-ndfs) yielded the first

parallel LTLmodel checking algorithmwhich can be linear in the size of the graph, but it

also introduced a new opportunistic way to parallelize similar algorithms –many impor-

tant graph algorithms are based on dfs. The impact of this research (see Section 1.7.4)

indeed shows that other researchers are beginning to apply similar methods.

In Chapter 5, we introduce the first version of Mc-ndfs: A parallel, dfs-based algo-

rithm that takes as venture point the embarrassingly parallel approach discussed in the

previous section, but adds limited communication to improve scalability. Though it only

scales for a small set of inputs, it showed the potential of the approach: good on-the-fly

performance and little overhead. The contribution of Chapter 6 is a detailed evaluation

of theMc-ndfs algorithm and a comparison against other algorithms: owcty by Barnat

et al. [ČP03] and ENdfs by Evangelista et al. [EPY11]. Because the approach of the
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1 ENdfs algorithm is similar but orthogonal [Laa+11; EPY11], the paper also presents

a trivial combination of the two, which shows that the algorithms indeed complement

each other in practice and together consistently perform better than the owcty algo-

rithm. Finally, Chapter 7 proposes an integrated combination of the algorithms from

[EPY11] and [Laa+11]. This algorithm uses less memory than its prequels (also less

than owcty), is less complicated, and performs at least equally well.

The combination of partial-order reduction and the parallel model checking of live-

ness properties forms a difficult problem because an extra condition (to wit: the ig-
noring proviso [EP10]) needs to be implemented that reasons over cycles in the state-

space graph. Solutions have been proposed, but all of them severely impede the POR

performance by overestimating the proviso: [BBR10a; Hol08; HB07; NG02; Bri+05;

BBC05a; Kur+98; BLLL09; LS99]. We solve this completely for an important subset

of LTL, namely livelocks, by showing that in this particular case, the proviso can be

weakened. In Chapter 8, we propose a parallel version of the dfsfifo algorithm [FS09]

for checking livelocks, and provide a proof of correctness. Experiments show excellent

scalability and POR for this algorithm on a 48-core machine.

Last, we provide additional experiments in Chapter 11. The implementation of a

promela frontend for LTSmin allows the use of all the proposed techniques from Part II

and Part III on models created for the popular spin model checker. The results solid-

ify our empirical evaluation of said algorithms by extending the benchmark set with

many freely available promela models. Indeed, the new experiments confirm again

that our multi-core model checking algorithms are scalable up to 48-cores (previously

16), on-the-fly, and use very little memory even compared to spin’s Collapse com-

pression [Hol97b].

1.7.3 Scalable Model Checking of Timed Systems

Chapter 9 presents the first scalable multi-core reachability algorithms for timed au-

tomata. Our algorithm supports various abstraction and extrapolation methods in order

to obtain a finite state space. This includes the coarsest abstraction, called inclusion
abstraction or subsumption. Experiments show speedups of up to 60 on a 48-core ma-

chine, compared to the popular uppaal model checker. The implementation in LTSmin

is also compatible with state compression, thus complementing the state-caching tech-

nique that is available in the uppaal model checker – both methods show comparable

reductions of memory usage, however as of yet, neither implements both techniques

simultaneously. We further investigate the influence of search orders on the size of the

abstracted state spaces, confirming the observations in [BHV00], but also demonstrat-

ing that parallel search orders can reduce the size of the state space.

Chapter 10 presents the first algorithm for LTL model checking of timed automata.
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Because the subsumption abstraction introduces a simulation relation on states, cycles

representing infinite traces can become spirals, as the chapter demonstrates. There-

fore, the combination of subsumption with LTL model checking was hitherto an open

problem [TYB05]. Moreover, we also give a parallel algorithm based on cndfs, but

extended with subsumption. Experimental results show promising reductions from the

abstraction, and reasonable scalability on a 48-core machine. The implementation in

LTSmin is the first available timed model checker that supports full LTL and the latest

abstraction and extrapolation techniques.

1.7.4 Impact of the Contributions

Apart from being the basis of the further research presented in the current thesis, the

shared hash table approach has inspired various other researches into the parallelization

of algorithms from diverse fields: Since recently, the model checker spin also imple-

ments our hash table implementation [Hol12]. Lowe used the hash table implementa-

tion to improve the scalability of his concurrent depth-first search algorithms [Low14].

Sulewski [SEK11; Sul12] uses the hash table design for host- based (on the CPU) du-

plicate detection to solve planning and other problems on GPGPUs. Other GPU-based

state-space exploration techniques [WB14] also employ our hash table, using a warp-
the-line probing sequence instead of the original walk-the-line technique (see Chap-

ter 2). Others are still exploring its effectiveness on GPUs [Nee14]. Multi-Core BDDs

were realized using an extension on our hash table design [DLP13]. And finally, Di-

VinE at least planned to implement the same shared hash table approach as indicated

in [Bar+10], [BB11, Sec. 2.2.2], and [Bar10, Sec. 2.1.3].

Moreover, tree compression was adopted in the DiVinE model checker as of version

3.1 alpha [Hav13]. The compression is not yet turned on by default, likely because its

lack of incremental updates does incur a runtime penalty for explicit-state inputs such

as DVE models [Sti13]. Since the runtimes with (incremental) tree compression are

comparable to those with a plain hash table, the technique has become the default in the

LTSmin model checker.

The intricacies of our multi-core nested depth-first search algorithms and their im-

plementation inspired Wan Fokkink, Pieter Hijma and Stefan Vijzelaar to create a stu-

dent assignment about them [FHV13]. The students are asked to implement the algo-

rithm and encouraged to find improvements to the algorithm and the implementation.

Because details of the correctness proof are more intricate than they might seem, this

reportedly often leads to incorrect derivative algorithms (and hopefully to equally many

learning moments). Their efforts led to the discovery of a bug in our parallel algorithm

with extensions. (We did not come up with a correctness proof for this extended algo-

rithm, only for the basic variant.) This bug has been corrected as described in Chapter 5.
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1 Our work on multi-core LTL model checking also inspired others to employ similar

techniques, i.e. starting multiple depth-first searches simultaneously with late informa-

tion sharing. For the PAT model checker, several of such algorithms are in develop-

ment [Dat13; XLHS13; LSD09b]. Next to similar nested depth-first search algorithms,

they also use Tarjan’s strongly connected component (SCC) algorithm [Tar72], for find-

ing (fair) accepting cycles [GV04] in parallel. Gavin Lowe [Low14] developed several

related concurrent depth-first search based algorithms for identifying SCCs, accepting

cycles, and normal cycles in a graph. These algorithms avoid unnecessary work com-

pletely at the cost of more synchronization: Searches may block on other searches, but

instead of waiting new searches are initiated. As a consequence, more searches can be

launched than the available processor cores. Therefore, these are scheduled in a way

that is similar to that in fine-grained task-based parallelism [Blu+95; Ayg+09]. Finally,

our use of depth-first like search orders was also taken over by the GPU variant of the

DiVinE model checker to improve its on-the-fly behavior [Bar+11a, Sec. 5.1].

Our most recent work on timed systems has had little time to catch on in the commu-

nity as of yet. Nonetheless, it has been considered as a means to study the performance

of fault-tolerant systems [Fac13] because of its capability to handle larger models than

uppaal using multiple cores and tree compression [Dal+12]. At the current author’s

native Formal Methods and Tools group at the University of Twente, several research

plans therefore also include the use of our timed algorithms to study both fault-tolerant

systems and biological systems [Sch+12].

1.8 Overview and Reading Guide

The current thesis contains 3 main parts. Because the chapters therein consist of pub-

lished conference papers that are largely left intact, the parts, as well as the chapters, can

be read independently. Additional introductions to the parts and chapters were added

to facilitate such random-access patterns by explaining their context within the thesis.

The first main part, Overview and Reading Guide, deals mainly with the problem

of scaling reachability and combing it with efficient state compression and partial-order

reduction. For this reason, it contents focus on concurrent data structures and the prop-

erties of modern multi-core machines concerning their scalability. Algorithms are only

of secondary importance here.

The secondmain part, Discussion and Conclusions, assumes the scalable data struc-

tures as a given and concerns itself mainly with algorithmic solutions. It presumes an

understanding of multi-core reachability as presented in Part II, especially Chapter 2.

The third main part, Conclusions, focuses on extending both reachability and LTL

model checking to the timed domain. For a detailed understanding of the proposed data
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structures and algorithms, a reading of the preceding parts (or at least Chapter 2 and

Chapter 7) is in order.

There is a natural flow between the chapters in each part, as all of them are the result

of a single line of research that has been set out in Section 1.5. Preceding chapters

often provide more general background information than is presented in the following

chapters. This is illustrated in Figure 1.5, where the arrows represent the suggested order

for reading the thesis and the dashed arrows represent (weak) dependencies between

chapters. We now discuss briefly the independent chapters explaining their relationship

and suggesting a reading order.

Chapter 2 is based on the paper “Boosting Multi-Core Reachability Performance
with Shared Hash Tables”, which was published at FMCAD 2010 [LPW10a]. It de-

scribes the main approach we use for scalable multi-core reachability and the underly-

ing lockless data structure. All state-space searches in subsequent chapters are based on

the same method, and all data structures use similar lockless approaches. The chapter

can be read in isolation.

Chapter 3 is based on the paper “Parallel Recursive State Compression for Free”,
which was published at SPIN 2011 [LPW11c]. It describes a lockless tree data structure

and also discusses its connection to the reachability algorithm. It investigates worst-case

and best-case compression ratios analytically and also presents empirical evidence that

the average compression is very close to the best-case compression.

Chapter 4 is based on the paper “A Parallel Compact Hash Table”, which was pub-

lished at MEMICS 2011 [VL12]. It presents a concurrent compact hash table, which

can store small fixed-size keys in succinct manner. It also presents a correctness proof

for the operations on the structure, but does not discuss its use in the context of model

checking in detail. The combination of compact hash table and tree compression is

discussed in Section 4.4.

Chapter 5 is based on the paper “Multi-core Nested Depth-First Search”, which was

published at ATVA 2011 [Laa+11]. It presents our first successful attempt at parallel

LTL model checking through the use of the ndfs algorithm. This dfs-based algorithm

does not lend itself directly for parallelization. We therefore come up with a novel

optimistic approach that allows threads to continue searching semi-independently and

randomly through the state space. Because it presents a rigorous proof of our parallel al-

gorithm, it could be a useful starting point for readers that are interested in parallelizing

other algorithms based on dfs.

Chapter 6 is based on the paper “Variations on Multi-Core Nested Depth-First
Search”, which was published on invitation at PDMC 2011 [LP11]. It combines the

parallel ndfs algorithm, with another algorithm which appeared in the literature. Mul-

tiple experiments confirm the scalability of the combined algorithm, but also explore

the excellent on-the-fly behavior.
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1 Chapter 7 is based on the paper “Improved Multi-Core Nested Depth-First Search”,
which was published at ATVA 2012 [Eva+12]. It presents an integrated combination

of the algorithms presented in the 2 preceding chapters. cndfs uses less memory, and

is a simpler algorithm, leading to a simpler proof of correctness.

Chapter 8 is based on the paper “Improved on-the-Fly Livelock Detection”, which

was published at NFM 2013 [LF13]. It proposes to solve the combination of parallel

LTL model checking with partial-order reduction, by focusing on an important subset

of liveness properties: livelocks. A new parallel algorithm, called pdfsfifo, is presented

based on the same techniques as presented in the 3 preceding chapters.

Chapter 9 is based on the paper “Multi-core Reachability for Timed Automata”,
which was published at FORMATS 2012 [Dal+12]. It extends our multi-core reacha-

bility to the domain of timed automata. It could be a starting point for those interested

in the implementation of timed automata. The discussion of parallel, timed reachability

algorithms depends slightly on Chapter 2.

Chapter 10 is based on the paper “Multi-core Emptiness Checking of Timed Büchi
Automata Using Inclusion Abstraction”, which was published at CAV 2013 [Laa+13b].

It ports cndfs to the timed setting. It also extends the cndfs algorithm to use the coarse

subsumption abstraction, leading to a reduced state-space search. The chapter presents

the first realization of parallel LTL model checking for timed automate, but also solves

the previously open problem of using coarse abstractions for LTL model checking. The

details of the cndfs algorithm under abstraction are probably only accessible to those

who have read Chapter 7.

Part V concludes the current thesis with additional experiments and a reflection on

our work.

Chapter 11 details on the experiments done with an implementation of the promela

language for the LTSmin model checker, as described in the paper “SpinS: Extending
LTSmin with Promela through SpinJa”, which was published at PDMC 2012 [BL13a].

The use of promela provides us with an extensive set of real-world model checker

problems, which are used to compare scalability more directly against the state-of-the-

art spin model checker on a 48-core machine. Moreover, the chapter demonstrates the

combination of our reachability algorithm with state compression and partial-order re-

duction, as presented in the paper “Guard-Based Partial-Order Reduction”, which was

published at SPIN 2013 [Laa+13a].

Finally, in Chapter 12, we compare the results to related work, evaluate the extent

to which our goals have been met, and pose some open questions.

Several appendices add detailed proofs for algorithms in Chapter 5 and Chapter 10.
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Part II – Overview and Reading Guide

Part III – Discussion and Conclusions

Part IV – Conclusions

Part V – Conclusions

Chapter 2

Boosting Multi-Core Reachability with a Lockless Hash Table

Chapter 3

Parallel Recursive State Compression for Free

Chapter 4

A Parallel Compact Hash Table

Chapter 5

Multi-Core Nested Depth-First Search

Chapter 6

Variations on Multi-Core Nested Depth-First Search

Chapter 7

Improved Multi-Core Nested Depth-First Search

Chapter 8

Improved On-The-Fly Livelock Detection

Chapter 9

Multi-Core Reachability for Timed Automata

Chapter 10

Multi-Core LTL Model Checking for Timed Automata

Chapter 11

Additional Experimental Evaluation

Chapter 12

Conclusions

Figure 1.5: Reading guide for the current thesis
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Introduction

At the time that the current work on parallel model checking was initiated, it was widely

believed in the community that scalable parallelization of model checking operations

was limited to input with large data sizes (state vectors), long transition delays (next-

state computation) and high branching factors [HB07; Hol08]. The high-throughput

nature of the procedure – many model checkers can generate millions of states per sec-

ond which can each consists of multiple kilobytes – was considered to be detrimental to

scalability. Still others believed that the right algorithms/implementation had yet to be

invented [BR08]. In the context of the project Multi-Core Model Checking, we there-

fore set out to parallelize reachability; the backbone of many more advanced model

checking techniques including LTL model checking [VW86; Laa+11; LP11].ex

Previous results [Bar+10; ČP03; Hol08], were based on distributed algorithmswhich

use a hash function to statically assign states to the different worker threads. This so-

called static partitioning results in high communication overhead, as most states require

remote processing. Others used a shared hash table with a locking mechanism [BR08;

Hol08]. These approaches led to meager parallel scalability.

We believed that a shared hash table approach could exploit the strengths of shared-

memory multi-processors to a much higher degree, if carefully designed to reduce

contention and bandwidth use (the memory footprint). Chapter 2 presents a lockless

hash table design which fulfills these requirements. Thus by focusing on the necessary,

instead of the possible – the literature is full of wait-free hash tables which are use-

ful to guarantee high responsiveness in real-time environments, but likely exhibit lim-

ited throughput due to the use of pointers [SS06] and even shared counters [GGH05;

GGH04] – we obtain near-ideal scalability for model checking as demonstrated by a

large set of experiments on a 16-core machine. (Chapter 2 focuses on the comparison

with other model checkers, but our hash table design itself is also evaluated by compar-

ing it against other concurrent hash tables in Chapter 4).
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The added benefit of the shared hash table approach, is that the open set of still-to-
be-explored states remains local, i.e. is not used for communicating states as with static

partitioning. A load balancer instead takes care of distributing load, when a worker’s

open set becomes empty. This reduces communication and allows for more flexibility

in the search algorithm, which can now also use a stack as open set implementation to

obtain both (pseudo) breadth-first and depth-first search orders.

While strict depth-first search (dfs) is off-limits, as workers influence each other’s

search order, this is also not needed for the safety properties considered in the current

part. And approximate dfs orders are enough to obtain good on-the-fly behavior in this

setting. (In theory dfs is likely not parallelizable, as discussed in detail in Section 5.1;

nonetheless, we show in Part III, that the depth-first property can still be used to realize

parallel LTL model checking in linear-time using a multi-core nested dfs algorithm.)

Strict bfs order can also be obtained with little extra synchronization as shown in Sec-

tion 9.6.2, where it is used to reduce state spaces under subsumption abstraction.
Great scalability is good to have, but without state compression the model checking

procedure will be severely limited by the available main memory. In order to pursue

our second research question (Section 1.5), we investigated the parallelization of tree

compression, a method that can reduce large state descriptors down to two integers

(Section 3.4). Chapter 3 presents a new concurrent algorithm for this tree data structure.

We show with a theoreti-

cal model that the optimal com-

pressed state size is 2 integers,

or 8 byte. Experiments show

that, for more than half of almost

300 benchmarks, the states are

indeed reduced to within 110%

of this optimal (see the figure

to the right, which summarizes

Figure 3.13). This includes ex-

amples with large state descrip-

tors of around 250 integers.

Again to support a high throughput, our tree reuses the lockless hash table design

from Chapter 2 by merging multiple tree tables together. To further reduce the memory

footprint, an incremental tree update algorithm is proposed. The surprising result is

that the runtimes and scalability are sometimes better than those obtained with the hash

table approach (see Figure 3.15), hence the title “Parallel Recursive State Compression

for Free”.

With the realization that the memory consumption of our tree table can be halved

using a compact hash table, we pursued a parallel version of the latter in Chapter 4. In
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such a compact table, a technique named quotienting is used, which instead of storing

full keys, stores only a quotient of the key in the table. Its remainder is used to find a

hash location in the table, and the full key can thus be restored from its quotient and the

location where it is found using some additional administrative bits to resolve hash col-

lisions [Cle84; GV03]. To parallelize compact hash tables, we propose a new dynamic
region-based locking scheme and show that the same scheme can also be used for other

hash table implementations, such as Knuth’s bidirectional linear probing [AK74]. Ex-

periments confirm the scalability of this design.

In Section 4.4, we discuss how the compact hash table is to be combined with tree

compression. By storing the tree roots inside the compact table, we indeed obtain com-

pressed state sizes that almost reach one integer. With an additional trick of growing

this table larger than the leaves table, we can also accommodate more than 4 billion

states. In other words, our compact tree compression is not limited by the 232 elements

addressable by an integer. Using an information-theoretic model, we show that the ob-

tained compression is indeed close to the lower bound achievable for encoding a stream

of states generated by a typical explicit model checker.

Moore’s law also held steadily during the execution of this PhD project, and thus

at a later stage we acquired access to a 48-core machine. The methods discussed in

this part of the thesis have proved to scale with this 3-fold increase in parallelism with

little modification: We merely had to adjust a few parameters in our load balancer im-

plementation to obtain near-ideal speedups on the new platform (while preserving the

performance on the older platforms). Chapter 11 provides experiments using 48 cores

confirming this, but the full benchmark set with hundreds of examples can be inspected

online [Laa]. Consequently, our approach has inspired various other researchers to use

similar approaches for their parallel algorithms (see Section 1.7.4).

The table below summarizes the goals that the current part meets (c.f. Table 1.1

in Section 1.5.3): It solves multi-core reachability with good on-the-fly behavior by

allowing different search orders (depth-first orders often locate ‘deeper’ bugs faster, es-

pecially with multiple parallel worker threads). Excellent compression is supported by

means of the parallel tree structure and its compact version. Partial-order reduction for

reachability properties, i.e. deadlocks, can be computed locally [Laa+13a] and hence
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can be combined with the parallel methods as demonstrated in Chapter 11. For other

safety properties, such as error actions and invariants, partial-order reduction requires

global conditions over the state-space, variants of which [BLLL09] can be supported

by our parallel algorithms. In Part III, we discuss alternate solutions for the so-called

ignoring proviso.
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2
Boosting Multi-Core Reachability with a Lockless Hash Table

Alfons Laarman, Jaco van de Pol, Michael Weber

Abstract
The current chapter focuses on data structures for multi-core reachability, which

is a key component in model checking algorithms and other verification methods.

A cornerstone of an efficient solution is the storage of visited states. In related work,

static partitioning of the state space was combined with thread-local storage. This

solution leaves room for improvements. The current chapter presents a solution

with a shared state storage. It is based on a lockless hash table implementation

and scales better. The solution is specifically designed for the cache architecture of

modern CPUs. Because model checking algorithms impose loose requirements on

the hash table operations, their design can be streamlined substantially compared

to related work on lockless hash tables. The resulting speedups are analyzed and

compared with related tools. Our implementation outperforms two state-of-the-

art multi-core model checkers, spin (presented at FMCAD 2006) and DiVinE, by

a large margin, while placing fewer constraints on the load balancing and search

algorithms.

About this chapter: The current chapter is based on the paper “Boosting Multi-Core
Reachability Performance with Shared Hash Tables”, which was published at FM-
CAD 2010 [LPW10a]. An extended report on the work was published at Arxiv [LPW10b]
and is integrated in the current chapter.

Compared to the original publication in [LPW10a; LPW10b], a few enhancements
have been made to the text presented here. First, we improved the memoized hashes
by using a separate hash function (hashx) for indexing and generating the memoized
hash itself in Algorithm 2.3. This independence results in fewer collisions during the
filtering on memoized hashes. We found that a fuller table can be rather sensitive
to the independence of these hash functions. We also simplified the algorithm’s
representation by splitting the calculation of cache line indices in a separate algorithm
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(Algorithm 2.4). Last, the experimental section was extended with the additional data
from the report version of the paper, and we included an additional benchmarks with
a static load balancer.

2.1 Introduction

Many verification problems are highly computational intensive tasks that can benefit

from extra speedups. Considering the recent hardware trends, these speedups can only

be delivered by exploiting the parallelism of the new multi-core CPUs.

Reachability, or full exploration of the state space, is a subtask of many verifica-

tion problems [CPR06; Bri06]. In model checking, reachability has in the past been

parallelized using distributed systems [Bri06]. With shared-memory systems, these

algorithms can benefit from the low communication costs as has been demonstrated

already [BBR07]. In the current chapter, we show how the performance of state-of-the-

art multi-core model checkers, like spin [HB07] and DiVinE [BBR07], can be greatly

improved using a carefully designed concurrent hash table as shared state storage.

Motivation. Holzmann and Bošnački used a shared hash table with fine-grained lock-

ing in combination with the stack-slicing algorithm in their multi-core extension of the

spin model checker [HB07; Hol08]. This shared storage enabled the parallelization of

many of the model checking algorithms in spin: safety properties, partial-order reduc-

tion and reachability. Barnat et al. implemented the same method in the DiVinE model

checker [BBR07]. They chose to implement the classic method of static state-space

partitioning, as used in distributed model checking [BR08]. They found the static par-

titioning method to scale better on the basis of experiments. The authors also mention

that they were not able to develop a potentially better solution for shared state storage,

namely the use of a lockless hash table. Thus it remains unknown whether reachability,

based on shared state storage, can scale.

Using a shared state storage has further benefits. Figure 2.1 shows the different ar-

chitectures discussed thus far. Their differences are summarized in Table 2.1 and have

been extensively discussed by Barnat et al. [BR08]. They also investigate amore general

architecture with a shared storage and arbitrary load-balancing strategy (not necessar-

ily stack-slicing). Such a solution is both simpler and more flexible, in the sense that it

allows for more freedom in the choice of the exploration algorithm, including (pseudo)

DFS, which enables fast searches for deadlocks and error states [RK88]. Holzmann al-

ready demonstrates this [Hol08], but could not show desirable scalability of spin (as we

will demonstrate). The stack-slicing algorithm [Hol08], is a specific case of load balanc-

ing that requires DFS. In fact, any well-investigated load-balancing solution [San97a]
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Worker 1 Worker 2

Worker 3 Worker 4

QueueQueue

QueueQueue

store store

storestore

(a) Static partitioning

store

Worker 1 Worker 2

Worker 4 Worker 3

Stack

Stack

Stack

Stack

(b) Stack slicing

Figure 2.1: Different architectures for model checkers

Table 2.1: Differences between architectures

Arch. Sync. points Pros / Cons
Figure 2.1(a) Queue local (cache efficient) storage / static load bal-

ancing, high comm. costs, limited to BFS

Figure 2.1(b) Shared store,

stack

low comm. costs / specific load balancing,

limited to (pseudo) DFS

Shared store Shared store,

(queue)

low comm. costs, flexible load balancing,

flexible exploration algorithm / scalability?

can be used and tuned to the specific environment, for example, to support heteroge-

neous systems or BFS exploration. Inggs and Barringer use a lossy shared hash table

[IB02], resulting in reasonable speedups at the cost of precision (states can potentially

be revisited), but give little details on the implementation.

Contribution. We present a data structure for efficient concurrent storage of states.

This enables scaling parallel implementations of reachability for many desirable explo-

ration algorithms. The precise needs which parallel model checking algorithms im-
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pose on shared state storage are evaluated and a fitting solution is proposed given the

identified requirements. Experiments show that our implementation of the shared stor-

age scales significantly better than an implementation using static partitioning, but also

beats state-of-the-art model checkers. By analysis, we show that our design will scale

beyond current state-of-the-art multi-core processors. The experiments also contribute

to a better understanding of the performance of the latest versions of spin and DiVinE.

Overview. Section 2.2 presents background on reachability, load balancing, hashing,

parallel algorithms and multi-core systems. Section 2.3 presents the lockless hash table,

whichwe designed for shared state storage. But only after we evaluated the requirements

that fast parallel algorithms impose on such a shared storage. In Section 2.4, the per-

formance is evaluated against that of DiVinE 2 [BBR09b] and spin. A fair comparison

can be made between the three model checkers on the basis of a set of models from the

BEEM database which report the same number of states for both spin and DiVinE. We

end the current chapter by putting the results we obtained into context, and an outlook

on future work (Section 2.5).

2.2 Preliminaries

Reachability in model checking. In model checking, a computational model of the

system under verification (hardware or software) is constructed, which is then used

to compute all possible states of the system. The exploration of all states can be done

symbolically, e.g., using binary decision diagrams (BDDs) to represent sets of states, or

by enumerating and explicitly storing all states. While symbolic methods are attractive

for a certain set of models, they are not a silver bullet: due to BDD explosion, sometimes

plain enumerative methods are faster. In the current chapter, we focus on enumerative,

or explicit-state, model checking.

Enumerative reachability analysis can be used to check for deadlocks and invariants

and also to store the whole state space and verify multiple properties of the system at

once. Reachability is an exhaustive search through the state space. The algorithm calls

for each state the next-state function to obtain its successors until no new states are

found (Algorithm 2.1). We use an open set Q, which can be implemented as a stack or

queue, depending on the preferred exploration order: depth- or breadth-first. The initial

state s0 is obtained from the model and added to Q. In the loop starting on Line 4, a

state is taken from Q, its successors are computed using the model (Line 7) and each

new successor state is put into Q again for later exploration. To determine which state

is new, a closed set V is used. V can be implemented with a hash table.
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Algorithm 2.1 Reachability analysis

1: procedure reachability(s0)

2: Q := {s0}
3: V := {s0}
4: while Q �= /0 do
5: s := s ∈ Q
6: Q := Q\ s
7: for all t ∈ next_state(s) do
8: if t �∈V then
9: V := V ∪{t}

10: Q := Q∪{t}

Possible ways to parallelize Algorithm 2.1 have been discussed in the introduction.

A common denominator of all these approaches is that the strict BFS or DFS order of the

sequential algorithm is sacrificed in favor of thread-local open sets (fewer contention

points). When using a shared state storage (in a general setup or with stack-slicing), a

thread-safe set V is required, which will be discussed in the following section.

Load balancing. A naive parallelization of reachability can be realized as follows:

perform a depth-limited sequential BFS exploration and hand off the found states to

several threads that start executing Algorithm 2.1 (T = {part of BFS exploration} and

V is shared). This is called static load balancing. For many models this will work due

to common ‘wide’ state spaces. However, models with synchronization points or strict

phase structure sometimes exhibit sandglass-shaped state spaces. Hence, threads run

out of work when they reach the convergent funnel at the same time. A well-known

problem that behaves like this is the Towers of Hanoi puzzle; when the smallest disk is

on top of the tower only one move is possible.

Sanders [San97a] describes dynamic load balancing in terms of a problem P, a work
operation and a split operation. Proot is the initial problem. Sequential execution takes

Tseq = T (Proot) time units. A problem is (partly) solved when calling work(P, t), which

takes min(t,T (P)) units of time. For parallel reachability, work(P, t) is Algorithm 2.1,

where t has to be added as an extra input that limits the number of iterations of the

while loop on Line 4 (and Proot = T = {s0}). When threads become idle, they can

poll others for work. The receiver will then split its own problem instance (split(P) =
{P1,P2}, T (P) = T (P1)+T (P2)) and send one of the results to the polling thread.
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Parallel architectures. Weconsidermulti-core x86 server and desktop systems. These

systems can process a large number of instructions per second, but have a relatively low

memory bandwidth. Multiple levels of cache are used to continuously feed the cores

with data, forming a steep memory hierarchy. Some of these caches are shared among

multiple cores (often L2) and others are local (L1), depending on the architecture of

the CPU and number of CPUs. The cache coherence protocol ensures that each core

in each CPU has a global view of the memory. It transfers blocks of memory to local

caches and synchronizes them if a local block is modified by other cores. Therefore, if

independent writes are performed on subsequent memory locations (on the same cache

line), a problem known as cache line sharing (false sharing) occurs, causing gratuitous

synchronization and overhead (see Section 1.6.1 for an example).

The cache coherence protocol cannot be preempted. To efficiently program these

machines, few options are left. Oneway is to completely partition the input [BR08], thus

ensuring per-core memory locality at the cost of increased inter-die communication.

An improvement of this approach is to pipeline the communication using ring buffers,

which allows prefetching (explicit or hardwired). This scheme was explored, e.g., by

Monagan and Pearce [MP09]. The last alternative is to minimize the memory working
set of the algorithm [PH05]. We define the memory working set as the number of

different memory locations that the algorithm updates in the time window that these

usually stay in local cache. A small working set minimizes coherence overhead.

The memory model of the CPU provides vital guarantees about the order in which it

commits reads (load instructions) and writes (store instructions) to memory. To improve

instruction level parallelism, the individual cores namely reorder and delay (indepen-

dent) loads and/or stores using store buffers (see Section 1.6.1). Sequential programs

rely on sequential consistency ensuring a total order of both reads and writes (all pre-

vious memory operations are committed before the next is executed). In sequential op-

eration this reordering behavior is thus opaque to the programmer, but parallel threads

may observe the reordering from other threads. Some version of a memory model is

often associated with all CPUs that implement a certain instruction-set architecture. For

example, the popular x86 architecture observes total-store order (TSO), which guaran-

tees that writes are never reordered (but reads may be). Others provide weaker guaran-

tees (consult [Ber13] for an overview). Here, we are mainly interested in x86 [Int07],

which is similar TSO. Intel [Int07] describes that x86 allows reordering of loads after

stores, but no reordering of other combinations, roughly summarizing a complex spec-

ification. Some programming languages, especially platform-independent ones such as

Java [Gos+05], provide their own memory model (c.f. [Gos+05, Sec. 17.4]).
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Locks. It is common to ensure mutual exclusion for a critical section of code by locks.

However, for resources with high contention, locks become infeasible. Lock prolifera-
tion improves on this by creating more locks on smaller resources. Region-based lock-
ing is an example of this, where a data structure is split into separately locked regions

based on memory locations. However, this method is still infeasible for computational

tasks with very high throughput. This is caused by the fact that the lock itself introduces

another synchronization point; and synchronization between processor cores takes time.

Lockless algorithms. For high-throughput systems, lock-free algorithms (withoutmu-

tual exclusion) are preferred. Lock-free algorithms guarantee system-wide progress,

i.e., always some thread can continue. If an algorithm does not strictly provide progress

guarantees (only statistically), but otherwise avoids explicit locks by the same tech-

niques as used in lock-free solutions, it is called lockless. Lockless algorithms often

have considerably simpler implementations, at no performance penalty. Last, wait-free
algorithms guarantee per-thread progress, i.e., all threads can continue.

Many modern CPUs implement a compare-and-swap (CAS) instruction which en-

sures atomic memory modification while at the same time preserving data consistency

if used in the correct manner. This can be done by reading the value from memory,

performing the desired computation on it and writing the result back using CAS (Algo-

rithm 2.2). If the latter returns true, the modification succeeded, if not, the computation

needs to be redone with the new value, or some other form of collision resolution should

be applied.

Algorithm 2.2 “Compare&Swap” specification

Pre: word �= null
Post:(∗wordpre = testval ⇒∗wordpost = newval)∧

(∗wordpre �= testval ⇒∗wordpost = ∗wordpre)∧
returns (∗wordpre = testval)

atomic bool CAS(int *word, int testval, int newval)

Lockless algorithms can achieve a high level of concurrency. However, an instruc-

tion like CAS easily costs 100–1000 instruction cycles depending on the CPU architec-

ture. Thus, abundant use defies its purpose.

Quantifying parallelism. Parallelism is usually quantified by normalizing the perfor-

mance gain with regard to a sequential run (speedup): S = Tseq/Tpar. Linear speedups

grow proportional to the number of cores and indicate that an algorithm scales well.
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Ideal speedup is achieved when S ≥ N. For a fair comparison of scalability, it is im-

portant to use the fastest tool for Tseq, or speedups will not be comparable, since better

optimized code is harder to scale (e.g., [HB07]).

Hashing. A well-studied method for storing and retrieving data with amortized time

complexity O(1) is hashing [Lit80]. A hash function h is applied to the data, yielding

an index in an array of buckets that contain the data or a pointer to the data. Since

the domain of data values is usually unknown and much larger than the image of h,
hash collisions occur when h(D1) = h(D2), with D1 �= D2. Structurally, collisions can

be resolved either by inserting lists in the buckets (chaining) or by probing subsequent

buckets (open addressing). Algorithmically, there is a wealth of options to maintain the

“chains” and calculate subsequent buckets [Cor+09]. The right choice depends entirely

on the requirements dictated by the algorithms that use the hash table.

2.3 A Lockless Hash Table

In principle, Algorithm 2.1 seems easy to parallelize; in practice it is difficult to do

this efficiently because of its memory intensive behavior, which becomes more obvious

when looking at the implementation of set V . In this section, we present an overview

of the options in hash table design. There is no silver bullet design and individual

design options should be chosen carefully, considering the requirements stipulated by

the use of the hash table. Therefore, we evaluate the demands that the parallel model

checking algorithms place on the state storage solution. We also mention additional

requirements stemming from the targeted hardware and software systems. Finally, we

present a specific hash table design.

2.3.1 Requirements on the State Storage

Our goal is to realize an efficient shared state storage for parallel model checking algo-

rithms. Traditional hash tables associate a piece of data to a unique key in the table. In

model checking, we only need to store and retrieve state vectors, therefore the key is the

state vector itself. Henceforth, we will simply refer to it as data. Our specific model

checker implementation introduces additional requirements, discussed later. First, we

list the definite requirements on the state storage:

• The storage needs only one operation: find-or-put. This operation inserts the state

vector if it is not found or yields a positive answer without side effects. We require

find-or-put to be concurrently executable to allow sharing the storage among the
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different threads. Other operations are not necessary for reachability algorithms,

since the state space is growing monotonically. By exploiting this feature we can

simplify the algorithms, thus lowering the strain on memory, and avoiding cache

line sharing. Our choice is in sharp contrast to standard literature on concurrent

hash tables, which often favors a complete solution, which is optimized for more

general access patterns [PH05; Cli07].

• The storage should not require continual memory allocation, for the obvious rea-

sons that this behavior would increase the memory working set.

• The use of pointers on a per-state basis should be avoided. Pointers take a con-

siderable amount of memory when large state spaces are explored (more than

108 states are easily reachable with today’s model checkers), especially on 64-bit

machines. In addition, pointers increase the memory working set.

• The time efficiency of find-or-put should scale with the number of processes ex-

ecuting it in parallel. Ideally, the individual operations should — on average —

not be slowed down by other operations executing at the same time, thus ensuring

nearly linear speedup. Many hash table algorithms have a large memory working

set due to their probing behavior or reordering behavior upon insertions. They

suffer performance degradation in high throughput situations as is the case for us.

Specifically, we do not require the state storage to be resizable. The available mem-

ory on a system can safely be claimed for the table, because the largest part will be used

for it eventually anyway. In sequential operation and especially in the presence of a

delete operation (shrinking tables), one would consider resizing for the obvious reason

that it improves locality and thus cache hits. In a concurrent setting, however, these

cache hits have the opposite effect of causing the earlier described cache line sharing

among CPUs. We experimented with lockless and concurrent resizing mechanisms and

observed large decreases in performance.

Furthermore, the design of the LTSmin tool [BPW10], which we extended with

multi-core reachability, also introduces some specific requirements:

• The storage data consists only of integer arrays or vectors of known and fixed

length. This is the encoding format for state vectors employed by our language

frontends.

• The storage is targeted at common x86 architectures, using only the available

(atomic) instructions.
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While the compatibility with the x86 architecture allows for concrete analysis, the

applicability of our design is not limited to it. Lessons learned here are transferable to

other architectures with similar memory hierarchy and atomic operations.

2.3.2 Hash Table Design

We determined that a low memory working set is one of the key factors to achieve

maximum scalability. Also, we opt for simplicity whenever the requirements allow for

it. From experience we know that complexity of a solution arises automatically when

introducing concurrency. These considerations led us to the following design choices:

• Open addressing, since the alternative chaining hash table design would in-

cur in-operation memory allocation or pre-allocation at different addresses, both

leading to a larger memory working set.

• Walking-the-line is the name we gave to linear probing on a cache line, followed

by double hashing (also employed elsewhere [Cli07; HST08]). Linear probing

allows a core to benefit fully from a loaded cache line, while double hashing

realizes better distribution.

• Separating data (vectors) in an indexed data array (of size buckets×|vector|)
ensures that the bucket array stays short2.1 and subsequent probes can be cached.

• Hash memoization speeds up probing, by storing the hash (or part of it) in

a bucket. This avoids expensive lookups in the data array as much as possi-

ble [Cli07].

• Lockless operation on the bucket array using a dedicated value to indicate unused

buckets. One bit of the hash can be used to indicate whether the vector was

already written to the data array or whether writing is still in progress [Cli07].

• Compare-and-swap is used as an atomic primitive on the buckets, which are

precisely in either of the following distinguishable states: empty, being written
and complete.

2.3.3 Hash Table Operations

Algorithm 2.3 shows the find-or-put operation. We assume for now that each line of code

can be executed atomically and with sequential consistency. At the end of the current

2.1E.g., 1 GB for a 32-bit memoized hash and 228 buckets
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section, we discuss implementation solutions for different memory models. Buckets are

represented by the M array, the separate data by the T array and hash functions used for

double hashing by hashi, where i represents the hash seed analogous to the concept of

random seeds used to initialize random number sequences. A separate hash function,

i.e. a different seed, is used for the memoized hash h and the indexing hash i to reduce

collisions. Probing continues (Line 3) until either a free bucket is found for insertion

(Line 7–8), or the data is found to be in the hash table (Line 12). Too many probes

indicate a full table, which simply causes the application to abort (Line 13).

The for loop on Line 5 handles thewalking-the-line probing behavior. Algorithm 2.4

captures said behavior. It returns a sequence of indices in the memoized hash array M
such that each corresponding bucket lies on the same cache line as the bucket M[i]. The
cache line can be determined by the pointer to each bucket M[x], as is done here by the

function cl(M[x]). The point of returning a sequence of indices, is to keep the algorithm

Algorithm 2.3 The find-or-put algorithm

Require: |T|= |M|
1: procedure table_find_or_put(〈T,M〉, V)

2: h := hash0(V)
3: for count := 1 to threshold do
4: i := hashcount(h) mod |T|
5: for all i ∈ walk_the_line(M, i) do
6: if cas(M[i],empty,〈h,wait〉) then � Expensive CAS instruction

7: T[i] := V � Write data array

8: M[i] := 〈h,done〉
9: return 〈false, i〉

10: if M[i] = 〈h,−〉 then
11: await M[i] = 〈h,done〉
12: if T[i] = V then return 〈true, i〉 � Read data array

13: report table full

Algorithm 2.4 Walking the (cache) line

Require: |T|= |M|
1: procedure walk_the_line(M, i)
2: low := min({x | cl(M[x]) = cl(M[i])}) � Lowest index on same cache line

3: high := max({x | cl(M[x]) = cl(M[i])}) � Highest index on same cache line

4: return 〈i, . . . ,high, low, . . . , i−1〉

53



Boosting Multi-Core Reachability with a Lockless Hash Table

2
deterministic. Note that the simplified code for walk_the_line returns duplicate indices

which should be removed to avoid unnecessary probes. The other code inside the loop

on Line 5 handles the synchronization among threads. We now explain this part of the

algorithm in detail.

Buckets store memoized hashes and the wait status bit of the data in the Data array.

The possible values of the buckets are thus: empty, 〈h,wait〉 and 〈h,done〉, where h
is the memoized hash. If an empty bucket is encountered on a probe sequence, the

algorithm tries to claim it by atomically writing 〈h,wait〉 to it (Line 6). After finishing

the writing of the data, 〈h,done〉 is written to the bucket (Line 8). Non-empty buckets

prompt the algorithm to compare the memoized hashes (Line 10). Only if they match

and if any writes to the data array have been completed (Line 11), the value in the data

array is compared with the vector (Line 12).

Several aspects of the algorithm guarantee correct lockless operation:

• Whenever awrite started for a hash value, the state of the bucket can never become

empty again, nor can it be used for any other hash value. This ensures that the

probe sequence remains deterministic and cannot be interrupted.

• The CAS operation on Line 6 ensures that only one thread can claim an empty

bucket, marking it as non-empty with the memoized hash and with status wait.

• The await statement at Line 11 waits until the write to the data array has been

completed.

Critical synchronization between threads occurs when multiple threads try to write

to an empty bucket. The CAS operation ensures that only one will succeed. The oth-

ers carry on in their probe sequence, possibly waiting until first thread’s completion.

Eventually, they either find another empty bucket, or the state vector in some bucket

(the same bucket or a bucket later in the probe sequence). This design can be seen as

a lock on the lowest possible level of granularity (individual buckets), but without a

true locking structure and associated additional costs. The algorithm uses a “lock” at

Line 11, which can implemented as a spinlock. Although it could be argued that this

algorithm is therefore not lock-free, it is possible to ensure local progress in the case that

the “blocking” thread dies or hangs (making the algorithm wait-free). Wait-freeness is

commonly achieved by making each thread fulfill local invariants, whenever they are

not (yet) met by other threads [HS08]. Our measurements show, however, that under

normal operation the loop on Line 11 is rarely hit due to the preceding hash memoiza-

tion check (Line 10). Thus, we took the pragmatic choice of keeping the algorithm, and

thus the implementation, as simple as possible.
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Implementation. The implementation of Algorithm 2.3 requires exact guarantees

from the underlyingmemorymodel. Instruction reordering by compilers and processors

needs to be avoided across the synchronization points, otherwise the implementation

becomes incorrect. It is, for example, a common optimization to execute the body of an

if statement before the actual branching instruction. Such a speculative execution would

keep the processor pipeline busy, but would be a disastrous reordering when applied

to Line 6 and Line 7: the actual writing of the data would happen before the bucket is

marked as full, allowing other threads to write to the same bucket. Likewise, reordering

Line 7 and Line 8 would prematurely indicate that writing the data has completed.

As explained above, our requirements stipulate the support of the x86 architecture.

Our language of choice is C, as it allows precise control over memory allocation (and

thus implementing the walking-the-line probe sequence), and is used by our model

checker tool LTSmin [LPW11a]. Our implementation uses the GNU gcc compiler,

which provides built-in access to atomic instructions, such as CAS.2.2 Note that on x86

these atomic instructions imply memory barriers, ensuring sequential consistency lo-

cally. Furthermore, we may rely on the fact that in the x86 architecture loads and stores

are atomic on aligned word-sized data [Int07], such as the memoized hashes in M.2.3 It

is therefore not a problem to implement every line in Algorithm 2.3 atomically.

The next step is dealing with the weak memory model of x86. To this end, gcc’s

atomic built-ins and/or explicit barriers could be used to prevent reordering all accesses

to shared memory locations in Algorithm 2.3 (Line 6 – 8 and Line 10 – 12). However,

the memory barriers would then serialize the entire execution resulting in no scalability.

To reason about the minimal number of barriers required, we consider all lines in the

code where shared data is read or written to. At Line 6, a memory barrier is unavoidable

(CAS is required). At Line 7 – 8, shared data is written, thus not reodered under TSO,

hence no memory barrier is required. At Line 10 – 12, shared data is read. These 3

instructions are not reordered by the x86 architecture [Int07]. It should be clear from

this explanation that weaker memorymodels require a (load) barrier on Line 11 (if loads

can be reordered), and/or a (store) barrier on Line 8 (if stores can be reordered).

We can also suggest guidelines for an implementation in Java. The Java Memory

Model (JMM)makes precise guarantees about the possible commuting ofmemory reads

and writes, by defining a partial order on all statements that effect the concurrent exe-

cution model [Gos+05, Sec. 17.4]. A correct implementation in Java should declare the

bucket array as volatile and use java.util.concurrent.atomic package for

atomic references and CAS. The volatile bucket array is needed because the JMM does

2.2http://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Atomic-Builtins.html.
2.3 However, one should always avoid volatiles [ER08], and take careful precautions to avoid compiler-time

reorderings: https://www.kernel.org/doc/Documentation/atomic_ops.txt
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not entail TSO. We are unsure however whether the JVM will avoid the unnecessary

memory barrier at Line 11 (in a loop!), on TSO architectures.

Finally, it is good practice to avoid impotent CAS instructions. This can be done by

placing an extra if condition before Line 6 which checks whether indeed M[i] = empty

(not shown in Algorithm 2.3). If CAS is executed blindly, many unnecessary overhead
is caused by its implied memory barrier (which locks the memory bus and waits until

all prior memory operations are committed). Agarwal et al. [Aga+10] also mention this

optimization.

Validation. Algorithm 2.3 was modeled in promela and checked for deadlocks

with spin. One bug concerning the combination of write bit and memoized hash was

found and corrected.

An enormous amount of experiments with hundreds of different models, further

confirms that the number of states and transitions reported always agrees with the results

of other model checkers.

2.4 Experiments

2.4.1 Methodology

We implemented the hash table in C for x86 architectures (TSO memory model) as

explained in the previous section. We further implemented a load balancer and par-

allel reachability algorithm from Section 2.2, and integrated everything in our model

checking toolset LTSmin, which we discuss further in the following section. For the

following experiments, we reuse not only the input models, but also the next_state
implementation of DiVinE 2.2. Therefore, a fair comparison with DiVinE 2.2 can

be made. Furthermore, we performed experiments with the latest multi-core capable

version of the model checker spin 5.2.4 [HB07] (DiVinE models were mechanically

translated to spin’s promela input language). For the experiments, we chose full state-

space exploration via reachability as load generator for our state storage. Reachability

exhibits similar access patterns as more complex verification algorithms, but reduces

the code footprint and therefore potential pollution of our measurements with noise.

All model checkers were configured for maximum performance. For all tools, we

compiled models to C with high optimization settings (-O3) (DiVinE also contains

a model interpreter). spin’s models were compiled with the following flags: -O3
-DNOCOMP -DNOFAIR -DNOREDUCE -DNOBOUNDCHECK -DNOCOLLAPSE
-DNCORE=N -DSAFETY -DMEMLIM=100000; To run the models we used the op-

tions: -m10000000 -c0 -n -w28. Refer to [Hol11] for details.
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We performed our experiments on AMD Opteron 8356 16-core servers with 64 GB

RAM, running a patched Linux 2.6.32 kernel.2.4 All tools were compiled using gcc 4.4

in 64-bit mode with maximal compiler optimizations (-O3).

2.4.2 Models

A total of 31 models from the Beem database [Pel07] have been used in the experi-

ments, which are shown in Table 2.2 (we filtered out models which were too small to

be interesting, or too big to fit into the available memory). Every run was repeated

at least four times, to exclude any accidental fluctuation in the measurements. Special

care has been taken to keep all the parameters across the different model checkers the

same. Especially spin provides a rich set of options with which models can be tuned to

perform optimal. Using these parameters on a per-model basis could give faster results

than presented here. It would, however, say little about the scalability of the core algo-

rithms. Therefore, we decided to leave all parameters the same for all the models. We

avoid resizing of the state storage in all cases by increasing the initial hash table size to

accommodate 228 states (enough for all benchmarked input models).

One parameter that we cannot control is the difference in state vector sizes. DiVinE

and spin use different vectors because theDVEmodels have been translated to promela.

LTSmin uses the original DVE models as well. But because LTSmin is a language-

independent model checker, it defines a fixed format for these vectors, which can cause

an increase in size of up to a factor 3 (characters are stored as integers). Table 2.2

shows the different state vector sizes in spin, DiVinE and LTSmin. When comparing

the different tools therefore, we take great care to compare absolute speedups, i.e. using

the runtimes of the fastest tool for Tseq.

Because of the translation, the state count of some models is different in spin. For

this reason, only 19 models could be used for spin: only those with similar state counts

(less than 20% difference; recall that for spin, models are translated from DVE to

promela).

2.4.3 Results

Figure 2.2 shows the runtimes of only three models for all model checkers. We ob-

serve that DiVinE is the fastest model checker for sequential reachability. Since the last

published comparison between DiVinE and spin [BBR07], DiVinE has been improved

2.4Experiments showed large regressions in scalability on newer 64-bit Linux kernels (degrading runtimes

with 10+ cores). Despite being undetected since at least version 2.6.20 (released in 2007!), they were easily

exhibited by our model checker. With a repeatable test case, the Linux developers quickly provided a patch:

https://bugzilla.kernel.org/show_bug.cgi?id=15618
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Table 2.2: Model details for DiVinE, LTSmin and spin

Beem Model
Reachable States State Vector Size [Byte]

DiVinE, LTSmin spin DiVinE spin LTSmin

anderson.6 18,206,917 18,206,919 25 68 76

at.5 31,999,440 31,999,442 20 68 56

at.6 160,589,600 — 20 — 56

bakery.6 11,845,035 11,845,035 24 48 80

bakery.7 29,047,471 27,531,713 24 48 80

blocks.4 104,906,622 88,987,772 23 44 88

brp.5 17,740,267 — 24 — 72

cambridge.7 11,465,015 — 60 — 208

elevator_planning.2 11,428,767 11,428,769 36 52 140

firewire_link.5 18,553,032 — 66 — 200

fischer.6 8,321,728 8,321,730 27 92 72

frogs.4 17,443,219 17,443,221 33 68 120

frogs.5 182,772,126 182,772,130 38 68 140

hanoi.3 14,348,907 14,321,541 63 116 228

iprotocol.6 41,387,484 — 43 — 148

iprotocol.7 59,794,192 — 47 — 164

lamport.8 62,669,317 62,669,317 22 52 68

lann.6 144,151,628 — 28 — 80

lann.7 160,025,986 — 35 — 100

leader_filters.7 26,302,351 26,302,351 36 68 120

loyd.3 239,500,800 214,579,860 18 44 64

mcs.5 60,556,519 53,779,475 26 68 84

needham.4 6,525,019 — 51 — 112

peterson.7 142,471,098 142,471,100 30 56 100

phils.6 14,348,906 13,956,555 45 140 120

phils.8 43,046,720 — 48 — 128

production_cell.6 14,520,700 — 42 — 104

szymanski.5 79,518,740 79,518,740 30 60 100

telephony.4 12,291,552 12,291,554 24 56 80

telephony.7 21,960,308 21,960,310 28 64 96

train-gate.7 50,199,556 — 43 — 128
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with a model compiler. In fact, all 3 model checkers use the approach of compiling

the model to obtain fast successor generation. spin is only slightly slower than DiVinE

and shows the same linear curve but with a gentler slope. We suspect that the grad-

ual performance gains are caused by the cost of the inter-thread communication (see

Table 2.1).

LTSmin is slower in the sequential cases. We verified that the allocation-less hash

table design causes this behavior; with smaller hash table sizes, the sequential runtimes

match those of DiVinE. We did not bother optimizing these results, because with two

cores, LTSmin is already at least as fast as DiVinE.

Figure 2.3, Figure 2.4 and Figure 2.5 show the speedups measured with LTSmin,

DiVinE and spin (note that we normalize with Tseq of DiVinE, the fastest sequential

tool). On 16 cores, LTSmin shows a two-fold improvement over DiVinE and a four-fold

improvement over spin. We attribute the difference in scalability for DiVinE to the extra

synchronization points needed for the inter-process communication by DiVinE. Recall

Figure 2.2: (Log-scale) Runtimes in spin, LTSmin and DiVinE 2 (3 models)
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that the model checker uses static state-space partitioning, hence most successor states

are enqueued at other cores than the one which generated them. Another disadvantage

of DiVinE is its use of a management thread, which causes the regression at 8 and

16 cores.

The speedups are shown to be linear for LTSmin. Only a speedup of 8 with 16 cores

is achieved compared to the sequential case of DiVinE. Figure 2.6 shows the speedup

of the individual models with LTSmin as sequential base case (Tseq), to illustrate the

scalability of the hash table itself. These results demonstrate almost ideal scalability.

spin shows inferior scalability even though it uses (like LTSmin) a shared hash ta-

ble, while doing load balancing via stack slicing. We can only guess that the locking

mechanism used in spin’s hash table (region locking) are not as efficient as our lockless

hash table. However, in LTSmin we obtained far better results even with the slower

pthread locks. It might also be that stack slicing does not have a consistent granu-

larity, because it uses the (irregular) search depth as a time unit (using the terms from

Figure 2.3: Speedup of Beem models with LTSmin (DiVinE as base case).
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Figure 2.4: Speedup of Beem models with DiVinE 2.2 (DiVinE as base case)

Figure 2.5: Speedup of Beem models with spin (DiVinE as base case)
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Figure 2.6: Speedup of Beem models with LTSmin (LTSmin itself as base case). This

figure shows that the shared hash table implementation attains almost ideal speedups.

Section 2.2: T (work(P0,depth))� T (work(P1,depth))).

Remark. A potential reason for the limited scalability of spin could be a memory

bandwidth bottleneck. We tested this hypothesis by enabling spin’s smaller, collapsed
state vectors (-DCOLLAPSE). We carried out a full spin benchmark run with collapsing

enabled (see Figure 3.3) and saw little improvement compared to the speedup results

without COLLAPSE. These results are consistent with the observation that LTSmin

is faster, despite generally producing larger state vectors than both, spin and DiVinE

(Table 2.2): in LTSmin, each state variable gets 32-bit aligned (for API reasons, not

performance).

Figure 2.7 shows the total times and average speedups over all models, for all tools.
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Figure 2.7: Total runtime/speedup of spin, DiVinE 2.2 and LTSmin
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Figure 2.8: Counting how often the algorithm “locks”

2.4.4 Shared-Storage Parameters

To verify our claims about the hash table design, we collected internal measurements

and performed synthetic benchmarks for stress testing. First, we measured how often

the write “lock” was hit. Figure 2.8 plots the lock hits against the number of cores

for several different sized models. For readability, only the worst-performing, and thus

most interesting, models were chosen. Even then, the number of lock hits is a very small

fraction of the number of table_find_or_put calls (equal to the number of transitions,

typically in the hundreds of millions). The Hanoi puzzle performs worst in this respect,

probably again due to its sandglass-shaped state space (see Section 2.2).

We measured how the average throughput of Algorithm 2.3 (the number of

table_find_or_put calls) is affected by the table fill rate, the table size and the read/write

ratio. Figure 2.9 illustrates the effects of different read/write ratios on the hash table

using synthetic input data. The average throughput remains largely unaffected by a high
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Figure 2.9: Effect of fill rate and r/w-ratio on average throughput

Figure 2.10: Effect of size vs r/w-ratio on average throughput
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fill rate, even up to 95% (as for Figure 2.10, which plots the same lines for different table

sizes). We conclude that the asymptotic time complexity of open-addressing hash tables

poses little real problems in practice. However, an observable side effect of oversized
hash tables is lower throughput for low fill rates due to increased cache misses. Our

hash table design amplifies this effect because it uses a pre-allocated data array and no

pointers. This explains the lower sequential performance of LTSmin.

We also measured the effect of varying the state vector size and did not find any

noticeable change in the speedup behavior (except for the expected lower throughput

due to higher data movement). This shows that hash memoization and a separate data

array perform well. Walking-the-line probing shows better performance and scalability

than double hashing alone, due to cache effects. Although slower on average, walking-

the-line followed by double hashing beats simple linear probing at fill-rates above 95 %

(in particular, on slower memory subsystems), because it leads to better distribution and

thus fewer probes.

2.5 Discussion and Conclusions

We designed a hash table suitable for application in reachability analysis. We imple-

mented it as part of a model checker together with different exploration algorithms

(pseudo BFS and pseudo DFS) and explicit load-balancing. We demonstrated the effi-

ciency of the complete solution by comparing the absolute speedups to spin 5.2.4 and

DiVinE 2.2, both leading tools in this field. We claim two times better scalability than

DiVinE and four times better than spin on average (Figure 2.7), with individual results

far exceeding these numbers. We also investigated the behavior of the hash table under

different fill rates and found it to live up to the imposed requirements.

Limitations. Without the use of pointers the current design cannot easily cope with

variably sized state vectors. In our model checker, this does not pose a problem be-

cause states are always represented by a vector of a static length. Our model checker

LTSmin [BPW10; LPW11a] can handle different frontends. It connects to DiVinE-

cluster, DiVinE 2.2, promela (via NipsVM [Web07]), μCRL, mCRL2 and ETF (in-

ternal symbolic representation of state spaces). Some of these input languages require

variably sized vectors (NIPS). We solve this by an initial exploration which continues

until a vector of stable size is found, and aborts when none can be found up to a fixed

bound. So far, this limitation did not pose a problem.

For LTSmin, the results in the sequential case turn out to be around 20% slower

than DiVinE 2.2. One of the culprits for this performance loss is the already men-

tioned suboptimal utilization of cache effects for small models. Indeed, the slowdown
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is observable in Figure 2.3 mostly for those models with small state spaces according

to Table 2.2. Embracing pointers and allocation, like in e.g. [Mic02], could be a poten-

tial remedy, however, it is unclear whether such a solution still scales when it actually

matters (i.e., for large models).

Further performance is lost in an extra level of indirection (function calls) due to the

design of LTSmin, which strictly separates the language frontend from the exploration

algorithms. We are willing to pay this price in exchange for the increased modularity

of our tool.

Discussion. We make several observations:

• We provide evidence that centralized state storage can be made to scale at least

as well as static state-space partitioning, contrary to prior belief [BR08].

• We also show that scalability is not as dependent on long state vectors and transi-

tion delays as earlier thought [Hol08]. In fact, we argue that a scaling implemen-

tation performs better with smaller state vectors, because the number of opera-

tions performed per loaded byte is higher, thus closer to the strengths of modern

multi-core systems.

• Shared state storage is also more flexible [BR08], for example allowing pseudo

DFS (like the stack-slicing algorithm) and fast deadlock/invariant searches [RK88].

Moreover, it facilitates explicit load balancing algorithms, enabling the exploita-

tion of heterogeneous systems. From preliminary experiments with load balanc-

ing we conjecture that overhead is negligible compared to static load balancing.

• Performance-critical parallel software needs adaptation to modern architectures

(steep memory hierarchies). The performance difference between DiVinE, spin

and LTSmin is an indication. DiVinE uses an architecture which is directly de-

rived from distributed model checking and the goal of spin was for “these new

algorithms [. . . ] to interfere as little as possible with the existing algorithms for

the verification of safety and liveness properties” [Hol08]. With LTSmin, we

had the opportunity to tune our design to the architecture of our target machines,

with excellent pay-off. We noticed that avoiding cache line sharing and keeping

a simple design was instrumental in the outcome.

• Holzmann conjectured that optimized sequential code does not scalewell [HB07].

In contrast, our parallel implementation is faster in absolute numbers and also

exhibits excellent scalability. We suspect that the (entirely commendable) design

choice of spin’s multi-core implementation to support most of spin’s existing

features unchanged is detrimental to scalability.
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Applicability. The components of our reachability can be reused directly for other

model checking applications. The hash table and the load balancing algorithms can be

reused to realize scalable multi-core (weak) LTL model checking [BBR07; BBR09b],

symbolic exploration and space-efficient enumerative exploration. We experimented

with the latter using tree compression [Blo+08a] based on our hash table. Results are

very promising and we follow up on that in Chapter 3 and Chapter 4.

Final note. Figure 2.6 shows that the speedups with LTSmin are almost ideal. We still

considered it interesting to investigate the overhead caused by the load balancer, in order

to identify the components that cause the most communication. By design, the load

balancer should only be called when threads run out of work on their local search stack

or queue, thus limiting communication as much as possible. Communication mainly

Figure 2.11: Speedup of Beem models with LTSmin using static load balancing

(LTSmin itself as base case). Naturally, the sequential runtimes remain unaffected by

the different load-balancer, so the figure is comparable to Figure 2.6.
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happens via the shared hash table, though sparsely due to its low spatial locality. In

an initial version of the exploration algorithm, we employed static load balancing by

means of an initial, short BFS exploration, after which the states from the last level

were handed off to all threads. The results are shown in Figure 2.11. Several models

were insensitive to this static approach (c.f. Figure 2.6), others, like hanoi and frogs,
are very sensitive due to the sandglass shape of their state spaces (see Section 2.2). A

look at the runtimes confirmed for us that dynamic load balancing did not come with a

noticeable performance penalty for the model that scale with static load balancing, i.e.

without any communication except via the hash table. Since hanoi and frogs also

scale well according to Figure 2.6, we can conclude that in all cases the load balancer

causes very little overhead (in the sequential base case, load balancing namely does not

occur).

Chapter 4 presents some experiments comparing our lockless hash table with other

parallel solutions. The results show a clear advantage for our table. We did not yet

consider other types of hash tables, like Cuckoo hashing [PR04] or Hopscotch hash-
ing [HST08]. Cuckoo hashing is an unlikely candidate, since it requires updates on

many locations upon inserts, easily resulting in extraneous cache coherence overhead.

Hopscotch hashing could be considered because it combines a low memory working

set with constant lookup times even under higher load factors. However, Hopscotch

hashing increases the memory working set for insertions, potentially sacrificing some

speedup. It would still be interesting to investigate its performance relative to our hash

table.
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Parallel Recursive State Compression for Free

Alfons Laarman, Jaco van de Pol, Michael Weber

Abstract

The current chapter focuses on reducing memory usage in enumerative model

checking, while maintaining the multi-core scalability obtained in earlier work. We

present a multi-core tree-based compression method, which works by leveraging

sharing among sub-vectors of state vectors.

An algorithmic analysis of both worst-case and optimal compression ratios

shows the potential to compress even large states to a small constant on average

(8 bytes). Our experiments demonstrate that this holds up in practice: the median

compression ratio of 279 measured experiments is within 17% of the optimum for

tree compression, and five times better than the median compression ratio of Spin’s

Collapse compression.

Our algorithms are implemented in the LTSmin tool, and our experiments show

that for model checking, multi-core tree compression pays its own way: it comes

virtually without overhead compared to the fastest hash table-based methods.

About this chapter: The current chapter is based on the paper “Parallel Recursive
State Compression for Free”, which was published at SPIN 2011 [LPW11c]. An
extended report on the work was published at Arxiv [LPW11b] and is integrated in
the current chapter.

Compared to the original version of the paper, we simplified the reachability algorithm
and the tree database figure in Section 3.2. We also completely revised Section 3.3,
by simplifying the algorithms and adding illustrative examples. Section 3.4 was rewrit-
ten, to provide a more detailed understanding of the compression ratios and how they
relate to the implementation choices of the tree.
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3.1 Introduction

Many verification problems are computationally intensive tasks that can benefit from

extra speedups. Considering recent hardware trends, these speedups do not come au-

tomatically for sequential exploration algorithms, but require exploitation of the paral-

lelism within multi-core CPUs. In Chapter 2, we have shown how to realize scalable

multi-core reachability, a basic task shared by many different approaches to verification.

Reachability searches through all the states of the program under verification to find

errors or deadlocks. It is bound by the number of states that fit into the main memory.

Since states typically consist of large vectors with one slot for each program variable,

only small parts are updated for every step in the program. Hence, storing a state in

its entirety results in unnecessary and considerable overhead. State compression solves

this problem, as the current chapter will show, at a negligible performance penalty and

with better scalability than uncompressed hash tables.

Related work. In the following, we identify compression techniques suitable for (on-

the-fly) enumerative model checking. We distinguish between generic and informed
techniques.

Generic compression methods, like Huffman encoding and run length encoding,

have been considered for explicit state vectors with meager results [HGP92; GVR99].

These entropy encodingmethods reduce information entropy [CT91] by assuming preva-

lence of common bit patterns. Such patterns have to be defined statically and cannot be

“learned” (as in dynamic Huffman encoding), because it is infeasible to change the en-

coding during state-space exploration. Otherwise, desirable properties, like fast equiv-

alence checks on states and constant-time state-space inclusion checks, will be lost.

Other work focuses on efficient storage in hash tables [Cle84; GV03] (see also Chap-

ter 4). The assumption is that a uniformly distributed subset of n elements from the

universe U is stored in a hash table. If each element in U hashes to a unique location in

the table, only one bit is needed to encode the presence of the element. If, however, the

hash function is not so perfect orU is larger than the table, then at least a quotient of the

key needs to be stored and collisions need to be dealt with. This technique is therefore

known as key quotienting. While its benefit is that the compression ratio is constant

for any input (not just constant on average), compression is only significant for small

universes [GV03], smaller than we encounter in model checking (where the universe

consists of all possible combinations of the slot values, not to be confused with the set

of reachable states, which is typically much smaller).

The information-theoretic lower bound on compression, or the information entropy,
can be reduced further if the format of the input is known in advance (certain subsets of
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U becomemore likely). This is what constitutes the class of informed compression tech-

niques. It includes works that provide specialized storage schemes for certain specific

state structures, like Petri nets [EPP05] or timed automata [Lar+97], but also Collapse

compression introduced by Holzmann for the model checker Spin [Hol97b]. It takes

into account the independent parts of the state vector. Independent parts are identified

as the global variables and the local variables belonging to different processes in the

Spin-specific language Promela.

Blom et al. [Blo+08a] present a more generic approach, based on a tree. All vari-

ables of a state are treated as independent and stored recursively in a binary tree of hash

tables. The method was mainly used to decrease network traffic for distributed model

checking. Like Collapse, this is a form of informed compression, because it depends

on the assumption that subsequent states only differ slightly.

Problem statement. Information theory dictates that the more information we have

on the data that is being compressed, the lower the entropy and the higher the achiev-

able compression. Favorable results from informed compression techniques [EPP05;

Lar+97; Hol97b; Blo+08a] confirm this. However, the techniques for Petri nets and

timed automata employ specific properties of those systems (a deterministic transition

relation and symbolic zone encoding respectively), and, therefore, are not applicable

to enumerative model checking. Collapse requires local parts of the state vector to

be syntactically identifiable and may thus not identify all equivalent parts among state

vectors. While tree compression showed more impressive compression ratios by analy-

sis [Blo+08a] and is more generically applicable, it has never been benchmarked thor-

oughly and compared to other compression techniques, nor has it been parallelized.

Generic compression schemes can be added locally to a parallel reachability algo-

rithm (see Section 3.2). They do not affect any concurrent parts of its implementation

and even benefit scalability by loweringmemory traffic [HGP92]. While informed com-

pression techniques can deliver better compression, they require additional structures

to record uniqueness of state vector parts. With multiple processors constantly access-

ing these structures, memory usage is again increased and mutual exclusion locks are

strained, thereby decreasing performance and scalability. Thus the benefit of informed

compression requires considerable design effort on modern multi-core CPUs with steep

memory hierarchies.

Therefore, in the current chapter, we address two research questions: (1) does tree

compression perform better than other state-of-the-art on-the-fly compression tech-

niques (most importantly Collapse), (2) can parallel tree compression be implemented

efficiently on multi-core CPUs.
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Contribution. The current chapter explains a tree-based structure that enables high

compression rates (higher than any other form of explicit-state compression that we

could identify) and excellent performance. A parallel algorithm is presented (Sec-

tion 3.3) that makes this informed compression technique scalable in spite of the mul-

tiple accesses to shared memory that it requires, while also introducing maximal shar-
ing. With an incremental algorithm, we further improve the performance, reducing

contention and memory footprint.

An analysis of compression ratios is provided (Section 3.4) and the results of exten-

sive and realistic experiments (Section 3.5) match closely to the analytical optima. The

results also show that the incremental algorithm delivers excellent performance, even

compared to uncompressed verification runs with a normal hash table. Benchmarks on

multi-core machines show near-perfect scalability, even for cases which are sequentially

already faster than the uncompressed run.

3.2 Background

In Section 3.2.1, we introduce a parallel reachability algorithm using a shared hash table

similar to the one in Chapter 2. The table’s main functionality is the storage of a large set

of state vectors of a fixed length k. We call the elements of the vectors slots and assume

that slots take values from the integers, possibly references to complex values stored

elsewhere (hash tables or canonization techniques can be used to yield unique values

for about any complex value). Subsequently, in Section 3.2.2, we explain two informed

compression techniques that exploit similarity between different state vectors. While

these techniques can be used to replace the hash table in the reachability algorithm,

they are are harder to parallelize as we show in Section 3.2.3.

3.2.1 Parallel Reachability

The parallel reachability algorithm (Algorithm 3.1) launches N threads with unique ids
and assigns the initial states of the model under verification only to the open set S1
of the first thread (Line 1). The open set can be implemented as a stack or a queue,
depending on the desired search order (note that with N > 1, the chosen search order

will only be approximated, because the different threads will go through the search

space independently). The closed set of visited states, DB, is shared, allowing threads

executing the search algorithm (Line 4-7) to synchronize on the search space and each

to explore a (disjoint) part of it (see Chapter 2). The find_or_put function returns true
when succ is found in DB, and inserts it when it is not.
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Load balancing is needed so that workers that run out of work (Sid = /0) receive

work from others. The function load_balance takes the local open set Sid from worker

id, queries the open sets of the other workers and either detects termination returning

false, or else transfers remote load to Sid and returns true. We implemented the function

load_balance as a form of Synchronous Random Polling [San97a], which also ensures

valid termination detection (see Section 2.2). It returns false upon global termination.

1 S1.putall(initial_states)
2 parallel_for(id := 1 to N)
3 while (load_balance(Sid))
4 while (Sid �= /0)
5 s := Sid.pop()
6 if (NEXT-STATE(s) = /0)
7 ...report deadlock...
8 for (t ∈ NEXT-STATE(s))
9 if (¬find_or_put(DB, t))

10 Sid.put(t)

Algorithm 3.1: Parallel reachability algorithm with shared state storage.

DB is generally implemented as a hash table. In Chapter 2, we presented a lock-

less hash table design, with which we were able to obtain almost perfect scalability.

However, with 16 cores, the physical memory, 64GB in our case, is filled in a matter

of seconds, making memory the new bottleneck. Informed compression techniques can

solve this problem with an alternate implementation of DB.

3.2.2 Collapse & Tree Compression

Collapse compression stores logical parts of the state vector in separate hash tables. A

logical part is made up of state slots local to a specific process in the model, therefore

the hash tables are called process tables. References to the parts in those process tables

are then stored in a root hash table. Tree compression is similar, but works on the

granularity of slots: tuples of slots are stored in hash tables at the fringe of the tree,

which return a reference. References are then bundled as tuples and recursively stored

in tables forming a binary tree. Figure 3.1 shows the difference between the process

tree (depth 2) and tree compression (depth log(k)).
When using a tree to store equal-length state vectors, compression is realized by the

sharing of subtrees among entries. Figure 3.2 illustrates this. On the left a set of vectors

is represented as stored in a hash table with k-sized buckets (omitting any empty buckets
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a b c d p q u v

a b c d p q u v

p q u va b c d

vector process tree binary tree

Figure 3.1: Process table and (binary) tree for the system X(a,b,c,d)‖Y (p,q)‖Z(u,v).
Taken from [BLL03].
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Figure 3.2: Sharing of subtrees in tree compression. Taken from [Blo+08a].

in the table). On the right, we see the same set of vectors, but now stored in a binary tree

of tables with buckets of size 2 storing tuples (again omitting any empty buckets). Each

tuple in the root table represents one state vector. Take the tuple 2 1 at location 5 in

the root table: We use zero-based, top-to-bottom indexing in the bucket arrays (indexing

has benefits over using larger pointers [Jan+06]). The values of the tuple (white) are

indices in the hash tables of the root’s children in the tree. The indexing continues

recursively for the tuple values that are white, until we eventually reach the leaf values

(gray), which represent the state reading from left to right.

Assuming that indices have the same size as the slot values (say b bits), we can

determine the compression rate in this example. The 9 vectors as stored in the plain
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hash table on the left, take 9×6b = 54b. The tree on the other hand takes 9×2b+4×
3× 2b = 42b. The difference between 42b and 54b may seem minimal, but we only

stored 9 relatively short vectors of relatively small size. In model checking, we often

deal with millions of vectors with potentially hundreds of slots.

It is easy to see that more vectors improve the compression. For example, we may

add a tuple 0 9 to the table on the right. With this we can create 9 new vectors by

adding 9 tuples * 3 to the root table. These new vectors cost only 20b more, compared

to the 54b it would take to store them in a hash table. In fact, with combinatorial state

vectors the child tables store only
√

n tuples, for a parent table storing n tuples, as shown

in Section 3.4. In Section 3.5, we show empirically that the combinatorial condition

often holds in practice.

3.2.3 Why Parallelization is not Trivial

Adding generic compression techniques to the above algorithm can be done locally by

adding a line compr := compress(succ) after Line 8, and storing compr in DB. This cal-
culation in compress only depends on the local succ and is therefore easy to parallelize.

If, however, a form of informed compression is used, like Collapse or tree compres-

sion, the compressed value comes to depend on previously inserted state parts, and the

compress function needs (multiple) accesses to the storage.
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Figure 3.3: Speedups with Collapse.

77



Parallel Recursive State Compression for Free

3

Global locking or even locking at finer levels of granularity can be devastating for

multi-core performance for single hash table lookups (see Chapter 2). Informed com-

pression algorithms, however, need multiple accesses and thus require careful attention

when parallelized. Figure 3.3 shows that Spin’s Collapse suffers from scalability prob-

lems (experimental settings can be found in Section 3.5).

3.3 Tree Database

Section 3.3.1 first describes the original tree compression algorithm from [Blo+08a].

As its implementation has an immediate effect on the obtained compression, we discuss

some implementation considerations throughout the section. In Section 3.3.2, we paral-

lelize the structure bymerging the multiple hash tables of the tree into a single fixed-size

lockless hash table. By simplifying the data structure in this way, we aid scalability.

Furthermore, we prove that it preserves consistency of the database’s content. How-

ever, as we also show, the new tree will “confuse” tree nodes with leaf nodes and er-

roneously report some vectors as found, while in fact they were not added yet. This is

corrected by tagging root tree nodes, completing the parallelization.

Section 3.3.3 shows how tree references can also be used to compact the size of the

open set in Algorithm 3.1. Now that the necessary parallelization and space reductions

are obtained, the current section is concluded with an algorithm that improves the per-

formance of the tree database by using thread-local incremental information from the

reachability search (Section 3.3.4).

3.3.1 Original Sequential Tree Database

The original tree compression algorithm from [Blo+08a] stores the tuples from Fig-

ure 3.2 in a balanced binary tree of hash tables. Such a tree has k−1 tree tables, each

of which has a number of siblings of both the left and the right subtree that is equal

or off by one. The tree_create function in Algorithm 3.2 generates the Tree structure

accordingly, with a TreeTable structure storing left and right subtrees, a Table table and

the length of the (sub)tree k. The table_create function allocates a hash table for storing

vectors of the length provided by its parameter.

The tree_find_or_put function in Algorithm 3.3 takes as arguments a Tree and a

state vector V (both of the same size k > 1), and returns a tuple containing a reference

to the inserted value and a Boolean indicating whether the value was found (true) or

not (false). In the latter case, it is added to the tree as a side effect, just as in the ta-
ble_find_or_put function described in Chapter 2. The function is recursively called on

each half of the state vector (Line 3-4) until the vector length is one. The recursion
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ends here and a single value of the vector is returned. At Line 5, the returned values of

the left (Rl) and right (Rr) subtree are stored as a tuple in the hash table using the ta-
ble_find_and_put operation. That operation also returns a tuple containing a reference

to the value (〈Rl ,Rr〉) in the hash table and a Boolean indicating whether it was found

in the table (true) or had to be added (false).

1 type Tree = TreeTable(Tree left, Tree right, Table table, int k) | Nil

3 proc Tree tree_create(k)
4 if (k = 1)
5 return Nil
6 return TreeTable(tree_create(�k/2�), tree_create(�k/2�), table_create(2), k)

Algorithm 3.2: Tree data structure.

1 proc (int, bool) tree_find_or_put(TreeTable(left,right,table,k), V )
2 assert (|V | = k)
3 (Rl , ) := tree_find_or_put(left, lhalf(V ))
4 (Rr, ) := tree_find_or_put(right, rhalf(V ))
5 return table_find_or_put(table, 〈Rl ,Rr〉)

7 proc (int, bool) tree_find_or_put(Nil, V )
8 assert (|V | = 1)
9 return (V [0], )

Algorithm 3.3: Tree data structure algorithm for the tree_find_or_put function.

The function lhalf takes a vector V as argument and returns the first half of the

vector: lhalf(V ) = [V0, . . . ,V(�k/2�−1)], and symmetrically rhalf(V ) = [V�k/2�, . . . ,V(k−1)],
with k = |V |. So, |lhalf(V )|= �|V |/2�, and |rhalf(V )|= �|V |/2�.
Example 3.1. Figure 3.4 shows how the vector 〈3,5,5,4,1,3〉 of length 6 is handled
by the tree_find_or_put function operating on a tree of length 6 (tree_create (6)). Each
recursive call is represented by the vector parameter V = 〈. . .〉, and a tuple of 2 squares
containing the return values of the subsequent recursive call at Line 3–4. The returned
values are combined into tuples and stored in the hash table of the respective TreeTable.
One such return value is either a slot from the vector (colored gray here), when the
corresponding tree (left or right) equals Nil and Line 9 is reached, or a location in
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a hash table when the corresponding tree is a TreeTable and Line 5 is reached. In the
example, these locations are named a,b,c and d, Their value depends on the hash tables
as illustrated in Figure 3.2. Location a for instance points to index 2 in the table of the
left-most tree node, storing 〈3,5〉.

〈3,5,5,4,1,3〉
a b

c 5 d 3

3 5 4 1

〈3,5,5〉 〈4,1,3〉

〈3,5〉 〈4,1〉

Figure 3.4: Example insertion of a k-sized vector in the tree. Notice the k−1 tree nodes.

Implementation considerations. A space-efficient implementation of the hash ta-

bles is crucial for good compression ratios. As discussed before, the hash tables in the

tree contain free buckets to insert new keys (states). The overhead of these buckets is

usually kept low by resizing the hash table when it becomes too full, e.g. at a fill rate

of 75%. Resizing is especially necessary in the tree because the different tree tables

contain an unpredictable and widely varying number of entries, or tuples (tables may

store as few tuples as the maximum number of tuples stored in either of its children, and

as many as the product of the number of tuples stored in both its children, as shown in

Section 3.4).

However, resizing replaces entries, thereby breaking the stable indexing that we used

in Example 3.1 (white values in the tuples). These indices cannot simply be modified

in the tuples of the parent hash table, because changing the tuple often implies that its

hash value changes, thus the tuple needs to be rehashed. In this way, the rehash cascades

upwards through the tree, which would be infeasible especially since higher tables can

contain quadratically as many entries (see Lemma 3.1).

As a famous saying goes: “all problems in computer science can be solved by an-

other level of indirection” [Spi07]. Indeed, the problem of reifying stable indices was

solved by maintaining a second table with references in [Blo+08a]. Figure 3.5 shows

how the left-most table in Figure 3.2 would be stored in this resizing table with stable

indices. The unoccupied buckets in the table on the left are shown to make clear that
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Figure 3.5: Example of a resizing hash table storing tuples with stable indexing.

the buckets are filled without any particular order, as the tuples are hashed to a location.

The additional index array on the right is filled in sequential fashion. Upon rehashing

of the table, the indices are modified but not replaced in the array, hence it can be used

as an index.

David Wheeler, to whom the above quote is attributed, also added the follow-up:

“But that usually will create another problem.” Again he is right in this case, as the

additional array increases the number of (random) memory references and the storage

costs per entry by 50% compared to a non-resizing hash table storing only tuples. While

a 50% increase in storage requirements seems modest, this requirement becomes more

problematic in the concurrent setting, as we will show in the following section. In Chap-

ter 2, we developed a non-resizing lockless hash table that exhibits excellent scalability

because it reduces the memory footprint as much as possible. The increased number of

memory references in the indexing table of Figure 3.5 retrocedes this benefit.

3.3.2 Concurrent Tree Database

Three conflicting requirements arise when attempting to parallelize Algorithm 3.3:

• Resizing is needed because the load of individual tables is unknown in advance

and varies highly.

• Stable indexing is needed, to allow for indexed references to table entries.

• Storing the additional array requires extra memory as explained in the previous

section, but it also adds another memory reference. This increases the memory

footprint, which in turn reduces scalability, as explained in Chapter 2.
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4 1

6 5

1 3

3 5

2 5

Figure 3.6: Example of the

tree structure storing 1 state

vector as represented in a

merged table. The root of

the vector is 2 5 .

4 1

3 5

1 3

Figure 3.7: The same

example with a different

hashing function. The

(collapsed) root here is

3 5 .

4 1

3 5

1 3

Figure 3.8: Same as Fig-

ure 3.7, with an additional

root tag bit (middle).

An ideal solution would be to merge all hash tables into a single non-resizable table.

This would ensure stable indices without any overhead for administering them, while

at the same time allowing the use of a scalable hash table design from Chapter 2. Fig-

ure 3.6 shows how the single vector 〈3,5,5,4,1,3〉 is stored in a single table (the hashing

function is left implicit, e.g.: the tuple 〈6,5〉 hashes to location 2). The merged-table

scheme enables maximal sharing of tuples between tree nodes: For example, if 〈3,5〉
would hash to location 3, instead of location 6, then we obtain the tree table shown in

Figure 3.7, in which the root, an internal node ( 6 5 in Figure 3.6) and the leaf all

collapsed into that same tuple 3 5 .

Concerning the correctness of merging the tree tables, we can ask the following

questions:

1. Can all tables safely be merged without corrupting the contents of the database?

2. Will the tree_find_or_put function return the right Boolean result when the tree
tables are merged?

The maximal sharing as exemplified above already suggests a negative answer to

the second question, as the algorithm can no longer distinguish between a tuple that is

a root and a tuple that is a leaf (if the leaf tuple is inserted first, as indeed 3 5 is, the

root tuple 3 5 will be seen as already present, hence the corresponding vector will

be regarded as previously inserted). We will come back to that later; first, we show that

the first question can be answered positively.
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To argue about the first question, we made a mathematical model of Algorithm 3.3

with one merged hash table. The hash table has stable indices and is concurrent, hence

each unique, inserted element will atomically yield one stable, unique index in the table.

Therefore, we can describe table_find_or_put as an injective function: H2 :N2→N. The

tree_find_or_put function can now be expressed as a recurrent relation (Tk : Nk → N,

for k > 1 and A ∈ Nk):

Tk(A0, . . . ,A(k−1)) = H2(T�k/2�(A0, . . . ,A(�k/2�−1)),T�k/2�(A�k/2�, . . . ,A(k−1)))
T1(A0) = A0.

If T provides an injective function (just as H), then the tree with merged tables preserves

all inserted vectors.

Theorem 3.1. For all k≥ 1, the function T describing the tree with merged hash tables
is injective.

Proof. To prove (injection): C ≡ Tk(A) = Tk(B) =⇒ A = B, with A,B ∈ Nk. We use

induction over k:
In the base case, T1(x) = I(x), the identity function satisfies C being injective.

Assume C holds ∀i < k with k > 1. We have to prove for all A,B ∈ Nk, that:

H2(T�k/2�(L(A)),T�k/2�(R(A))) = H2(T�k/2�(L(B)),T�k/2�(R(B))) =⇒ A = B,
with L(X) = X0, . . . ,X(�k/2�−1) and R(X) = X�k/2�, . . . ,X(k−1).

Note that:

(∗)
{

L(A) = L(B)∧R(A) = R(B)} if A = B
L(A) �= L(B)∨R(A) �= R(B)} if A �= B.

Hence,

Tk(A) = Tk(B)
=⇒ H2(T�k/2�(L(A)),T�k/2�(R(A))) = H2(T�k/2�(L(B)),T�k/2�(R(B)))
inj.H2=⇒ T�k/2�(L(A)) = T�k/2�(L(B))∧T�k/2�(R(A)) = T�k/2�(R(B))
ind.hyp.
=⇒ L(A) = L(B)∧R(A) = R(B)
(∗)
=⇒ A = B
Proving that C holds for all A, B and k.

Now, it follows that an insert of a vector A ∈Nk always yields a unique value for the

root of the tree (Tk), thus demonstrating that the contents of the tree database are not

corrupted by merging the hash tables of the tree nodes.

However, as we suggested before, Algorithm 3.3 will not always yield the right

Boolean answer with merged hash tables. Combining the example of Figure 3.7 with

the mathematical model, we have T2(3,5) = T3(3,5) = T6(3,5) = H2(3,5). Since the

leaf is inserted first, the root will find the tuple 〈3,5〉 already inserted.
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1 type ConcurrentTree = CTree(Table table, int k)

3 proc (int, bool) tree_find_or_put(CTree(table,k), V )
4 assert (|V | ≤ k∧|V |> 0)
5 if (|V |= 1)
6 return (V [0], )
7 (Rl , ) := tree_find_or_put(CTree(table,k), lhalf(V ))
8 (Rr, ) := tree_find_or_put(CTree(table,k), rhalf(V ))
9 (R, B) := table_find_or_put(table, 〈Rl ,Rr〉) � Find/put in tree table

10 if (|V |= k) � The recursion returned at the root call
11 B := if (table_try_tag(R)) then false else true � Is the root new?
12 return (R, B)

Algorithm 3.4: Concurrent tree data structure algorithm for tree_find_or_put function.

Nonetheless, we can use the fact that Tk is an injection to create a concurrent tree

database by adding one bit (a tag) to the merged hash table. The tag bit can be seen as

having the two values, non_root and is_also_root, and is always initiated as non_root.
Algorithm 3.4 defines a new ConcurrentTree structure, only containing a single hash

table table and the length of the vectors k. Once the recursive calls return at the root

node, the table_try_tag function now atomically tries to set the tag on the entry (the

tuple) pointed to by R to is_also_root in table. To this end, it can employ the atomic

hardware instruction compare-and-swap (CAS) (see Chapter 2). If the function fails to

set the tag to is_also_root (because the tag was already set to that value), we return true

(indicating the state vector was found in the tree), and else we return false (indicating

that it was not found and has been inserted).

Although we no longer maintain explicit tree nodes in Algorithm 3.4, the recursion

still follows the same pattern of doing k−1 table lookups as explained in Example 3.1.

In the following, we will keep referring to the steps in the recursion as tree nodes, even
though they are now virtual nodes.

Implementation considerations. Crucial for efficient concurrency is memory lay-
out. While a bit array or sparse bit vector may be used to implement the tags (using

R as index), its parallelization is hardly efficient for high-throughput applications like

reachability analysis. Each modified bit will cause an entire cache line (with typically

thousands of other bits) to become dirty, causing other CPUs accessing the same mem-

ory region to be forced to update the line from main memory. The latter operation is
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multiple orders of magnitude more expensive than normal operations, and also more

costly than a simple uncached load. Therefore, we merge the bit array/vector into the

hash table table as shown in Figure 3.8, for this increases the spatial locality of node

accesses with a factor proportional to the width of tree nodes. The small column in the

middle represents the bit array with white entries indicating non_root and black entries

indicating is_also_root. Tuple and bit are bit-crammed into a word (e.g. Section 9.6.3).

Furthermore, to implement table, we used the lockless hash table presented in Chap-

ter 2, benefiting from its cache-efficient probing behavior. This table normally uses

memoized hashes in order to speedup probing over larger keys. Since the stored tree

nodes can be relatively small (64 or 128 bits), we dropped the memoized hashes. In

fact, the buckets in the tree table are so small that we were even able to remove the

locking bit from the hash table, because the atomic CAS can operate on entire buckets.

The appropriate size of the buckets in the tree table is discussed in Section 3.4.

3.3.3 References in the Open Set

Now that tree compression reduces the space required for state storage, we observe that

the open sets of the parallel reachability algorithm can become a memory bottleneck

[LPW11a]. A solution is to store references to the root tree node in the open set as

illustrated by Algorithm 3.5, which is a modification of Line 4-7 from Algorithm 3.1.

1 while (ref := Sid .get())
2 state := tree_get(DB, ref)
3 for (succ ∈ NEXT-STATE(state))
4 (newref, found) := tree_find_or_put(DB, succ)
5 if (¬found)
6 Sid .put(newref)

Algorithm 3.5: Reachability analysis algorithm with references in the open set.

The tree_get function is shown in Algorithm 3.6. It reconstructs the vector from a

reference. References are looked up in table using the table_get function, which returns

the tuple stored in the table. The algorithm recursively calls itself until k = 1; at this
point ref_or_val is known to be a slot value – it is not a ref erence – and is returned as

vector of size 1. Results then propagate back up the tree and are concatenated on Line 7,

until the full vector of length k is restored at the root of the tree.
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1 proc int[] tree_get(CTree(table,k), val_or_ref)
2 if (k = 1)
3 return [val_or_ref]
4 [Rl , Rr] := table_get(table, val_or_ref)
5 Vl := tree_get(CTree(table,�k/2�), Rl)
6 Vr := tree_get(CTree(table,�k/2�), Rr)
7 return concat(Vl , Vr)

Algorithm 3.6: Algorithm for tree vector retrieval from a reference

3.3.4 Incremental Tree Database

New states are generated by calling the NEXT-STATE function on found states (starting

from the initial states). Often states are very similar due to locality in the model. In the

example below, only one slot value has changed, which is not uncommon:

NEXT-STATE(〈3,5,5,4,1,3〉) = {〈3,5,9,4,1,3〉}
The time complexity of the tree compression algorithm, measured in the number of

hash table accesses, is linear in the number of state slots (k−1 lookups are performed:

one at each tree node). However, because of today’s steepmemory hierarchies these ran-

dommemory accesses are expensive. Luckily, the same principle that tree compression

exploits to deliver good state compression, can also be used to speedup the algorithm:

The only tuples that need to be inserted into the tree table are the ancestors of leaves

corresponding to slots that actually changed with respect to the previous state. For a

state vector of size k, the number of table accesses can be brought down from k−1 (the

〈3,5,5,4,1,3〉 〈3,5,9,4,1,3〉NEXT-STATE

a b

c 5 d 3

3 5 4 1

〈3,5,5〉 〈4,1,3〉

〈3,5〉 〈4,1〉

〈3,5,5〉 〈4,1,3〉

〈3,5〉 〈4,1〉

e b

c 9

Figure 3.9: Incremental insertion of a vector in the tree database.
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total number of nodes in a tree) to c× log2(k) (the height of the tree) assuming c ≤ k
slots changed. But likely fewer than c× log2(k), because the changed slots can be close

to each other in the tree (due to shared paths to the root).

Hence our goal is here to find/put a vector V in the tree database, while reusing the

computations used to find/put its predecessor P, i.e. V ∈ NEXT-STATE(P), as much as

possible. So to avoid looking up P again, we need to store all the computed references

at the different (virtual) tree nodes. In other words, we must not only keep P in the open

set of Algorithm 3.1, but the entire tree associated with it, as shown in Example 3.1.

Figure 3.9 presents an incremental tree update for the example considered above.

Algorithm 3.7 presents a reference tree structure that can be used for this purpose:

the RefTree. The associated ref_tree_create function creates an empty reference tree

with only ⊥ values in the tree nodes and leaves. The ⊥ value is meant to be different

from the slot values in a vectorV , so that the incremental procedure can be initiated (the

initial states in Algorithm 3.1 have no predecessors). While we use the large RefTree
structure with additional pointers and length attributes to clarify the algorithms, it is
hardly needed to store the full structure in the open set. In fact, a short vector that con-

catenates the k−1 tuples in the tree suffices to represent the whole RefTree (assuming

the fixed length k is known).

1 type RefTree = RTree(RefTree left, RefTree right, int k, int ref)|Leaf(int v,bool c)

3 proc RefTree ref_tree_create(k)
4 if (k = 1)
5 return Leaf(⊥)
6 left := ref_tree_create(�k/2�)
7 right := ref_tree_create(�k/2�)
8 return RTree(left, right, k, ⊥)

Algorithm 3.7: RefTree structure to store all tree.

Algorithm 3.8 presents the incremental variant of the tree_find_or_put function.

The callee has to supply as additional argument an reference tree of the predecessor P
of V (V ∈ NEXT-STATE(P)). Or an empty reference tree created with ref_tree_create,
if V ∈ initial_states. Instead of returning a tuple with a reference (and a Boolean),

tree_find_or_put now returns a tuple with a complete reference tree for V , which can in

turn be used for incrementally storing any direct successor of V . The Boolean in the

returned tuple now indicates whether the part of the vector V that is associated with the

current subtree is equivalent to that same part in the predecessor vector P (see Line 3).

This Boolean is used on Line 10 as a condition for the hash table access; if the left or
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1 proc (RefTree, bool) tree_find_or_put(CTree(table,k), V , Leaf(val))
2 assert (|V |= 1)
3 return (Leaf(V [0], V [0] = val))

5 proc (RefTree, bool) tree_find_or_put(CTree(table,k), V , RTree(left,right,l,ref))
6 assert (|V |= l)
7 assert (l ≤ k∧ l > 0)
8 (Rl , Bl) := tree_find_or_put(CTree(table,k), lhalf(V ), left)
9 (Rr, Br) := tree_find_or_put(CTree(table,k), rhalf(V ), right)

10 if (Bl ∧Br) � Are all descendant leaves unmodified (see Line 3)?
11 return (RTree(Rl ,Rr,l,ref), true) � Return reference from predecessor
12 else � If a descendant leaf is modified:
13 (R, ) := table_find_or_put(table, 〈Rl ,Rr〉) � Find/put tuple in table
14 if (|V |= k) � The recursion returned at the root call
15 return (RTree(Rl ,Rr,l,R), ¬table_try_tag(R)) � Is the root new?
16 else return (RTree(Rl ,Rr,l,R), false) � Return new reference and false

Algorithm 3.8: ReferenceTree structure and incremental tree_rec function.

the right subvectors are modified, then the returned reference tree is updated with a new

reference that is looked up in table at Line 13.

Notice that at the root node, when k = |V |, the algorithm returns a different Boolean,
indicating whether the tree root is new or not, as deduced from the tag bit discussed
above. This difference stems from the fact that the initial callee is the reachability algo-

rithm, which is interested in knowing whether V was already in the database, whereas

the recursive calls require information on similarities between V and P.
The incremental tree_find_or_put function changed its interface with respect to Al-

gorithm 3.4. Algorithm 3.9 presents a new search algorithm (Line 4-7 in Algorithm 3.1)

that also records the reference tree in the open set. RefTree refs has become an input

of the tree database, which returns a new RefTree new_refs to be stored along next in
the open set. For simplicity, we store both the vector and the reference tree in the open

set, while in fact the first can be reconstructed from the latter. (In fact, when storing the

reference tree succinctly in an array, as discussed above, the vector can be read directly

from this array.) We measured the speedup of the incremental algorithm compared to

the original (for the experimental setup see Section 3.5). Figure 3.10 shows that the

speedup is linearly dependent on log2(k), as expected.
Because the internal tree node references are stored, Algorithm 3.9 increases the

size of the open set by a factor of almost two. This is not of major concern, as the open
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1 while ((prev, refs) := Sid .get())
2 for (next ∈ NEXT-STATE(prev))
3 (new_refs, found) := tree_find_or_put(DB, next, refs)
4 if (¬found)
5 Sid .put((next, new_refs))

Algorithm 3.9: Reachability analysis algorithm with incremental tree database.

sets could further be reduced by storing and retrieving it piecemeal to disk [HW07].

For breadth-first search, the access patterns in the open set are regular enough to do

this without overhead. To still support other search orders, we can either modify the

tree_get function in Algorithm 3.6 to also return the reference trees, or the tree_get
function can be integrated into the incremental algorithm (Algorithm 3.8). (We do

not present these algorithm algorithms here as they are easy to derive from the above

algorithms.) While it seems that the additional lookups required to reconstruct reference

trees for predecessor vectors mitigate the benefits of the incremental method, it turns out

that often the tuples for the predecessor are still cached: We measured little slowdown

when doing this reconstruction before generating all successors of a state at once (about

Figure 3.10: Speedup of Algorithm 3.8 wrt. Algorithm 3.4.
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10% across a wide spectrum of input models).3.1 Alternatively, as a trade-off, we could

decide to lower the cutoff point in the tree, and store multiple references occurring at a

certain tree depth x < log2 k in the open set. This latter approach was used in [Blo+08a].

3.4 Analysis of Compression Ratios

In the current section, we establish the worst-case and the best-case compression ratio

for hash tables, the tree database and the process table (Collapse compression). We

make the following reasonable assumptions about their dimensions:

• The respective database stores a set S of n = |S| state vectors of k slots.3.2

• The size of a reference, or index, in the table is w bits.

• The size of the slot is u bits, with u≤ w, so we can store a slot in the same space

as a reference in the table.3.3 (Hence, the state-vector universe is: 2uk.)

• The number of processes in Collapse compression is 1 < p≤ k.

• Keys can be stored without overhead in tables.3.4

• We only count occupied table buckets, omitting the space reserved for empty

buckets.3.5

• k is a power of 2.3.6

As explained in the footnotes, most of these assumptions are introduced to simplify

the model, while others reflect the requirements imposed by implementation details,

such as the way that references are implemented.

3.1 For this reason, tree compression with references on the stack has become the default state storage

method in the LTSmin model checker [LPW11a; BPW10].
3.2The fixed length of state vectors does not prevent us from model checking more dynamic systems, as

we can safely over-approximate this length. The good compressions and performance of incremental tree

compression ensure that the overhead does not matter much, as Section 3.5 demonstrates.
3.3As noted above, complex slots values can easily be hashed in separate tables to obtain unique values.
3.4 This assumption holds for tree tables proposed here, as we explain at the end of the current section,

but is less realistic for hash tables storing large state vectors as explained in Chapter 2. Since we compare

compressions with respect to hash table storage, this is a safe approximation.
3.5Especially in the case of model checking, this results in a reasonable indication of the compressed

sizes, because the size of the checked system depends by and large on the number of entries we can store in

the closed set of the reachability algorithm. In other words, our goal is to squeeze as many states as possible

in the available memory.
3.6Solely assumed to simplify the formulae below.
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Figure 3.11: From left to right: a hash table, a (concurrent) tree table and a process

table with their dimensions.

Figure 3.11 provides an overview of the different data structures and the stated as-

sumptions about their dimensions. Note that buckets are always drawn vertically. The

original sequential tree database is not drawn, but can be considered as set of k− 1
tables which each require 3 w-bit units per bucket as shown in Figure 3.5.

3.4.1 Tree Database

To deduce the average compressed state vector size, we will reason on the number of

tuple entries stored in a tree database (sequential or concurrent), containing the n state

vectors. For simplicity, we disregard the maximal sharing property that was discussed

in the previous section. This over-approximates the memory usage of the concurrent

tree and thus is a fair assumption. This simplifies the case of the concurrent tree, since

its merged table will contain equally many entries as are stored across all tables in the

original sequential tree. At the end of the current section, we discuss the possible effects

of maximal sharing on the worst- and best-case compression. The number tuple entries

stored in the tree database depends on: n, k, and the combinatorial structure of S. The
latter is fixed to arrive at the following theorems:

Theorem 3.2. In the worst case, the tree database requires k−1 tuple entries per state
vector regardless of the number of vectors [Blo+08a].
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Proof. Consider the case where all states s ∈ S have k identical slot values:

S = {〈v, . . . × k . . . ,v〉 | v ∈ {1, . . . ,n}}. No sharing can occur between the state vectors

in the database, so for each state we store k−1 tuples at the tree nodes.

Corollary 3.1. In the worst case, the concurrent tree database in Algorithm 3.4 re-
quires less than 2k(w+ 1) bits per state vector regardless of the number of vectors in
the database.

Proof. According to Theorem 3.2, the tree table contains k− 1 tuple entries per state.

These entries each require 2w+1 bits. And: (k−1)× (2w+1) = 2kw+ k−2w−1 <
2kw+2k = 2k(w+1).

Corollary 3.2. In the worst case, the sequential tree database in Algorithm 3.3 requires
3kw bits per state vector regardless of the number of vectors in the database.

Proof. According to Theorem 3.2, the tree table contains k− 1 tuple entries per state.

These entries each require 3w bits.

The best-case scenario is easy to comprehend from the effects of a good combi-

natorial structure on the size of the parent tables in the (sequential) tree. If a certain

tree table contains d tuple entries, and its sibling contains e entries, than the parent can

have up to d× e entries (all combinations, i.e. the Cartesian product). In a tree that is

perfectly balanced (d = e for all sibling tables), then the root node has n entries (1 per

state), its children have
√

n entries, its children’s children 4
√

n, etc. Figure 3.12 depicts

this scenario.

s0 .........

.........

k

sk-1

log2(k)
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√
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Figure 3.12: Optimal entries per tree node level.

92



3

3.4 Analysis of Compression Ratios

Hence there are a total of n+ 2
√

n+ 4 4
√

n+ . . .(log2(k) times) . . .+ 2/k 2/k
√

n tuple

entries. Dividing this series by n gives a series for the expected number of tuple en-

tries per state:
log2(k)−1

∑
i=0

2i 2i√
n

n . It hard to see where this series exactly converges, but

[Blo+08a] established however a useful upper bound.

Theorem 3.3. In the best case, the tree database requires a total of n+
√

n(k−2) tuple
entries to store n vectors [Blo+08a].

Proof. In the best case, the root tree table contains n entries and its children contain
√

n
entries. The entries in the root’s children represent vectors of size k/2. To obtain an upper

bound, we assume that the roots children store their
√

n vectors of size k/2 as in the worst

case. For one child, according to Theorem 3.2, this requires k/2−1 entries per state in all

of the child’s descendants (including entries in the child’s own table). The total number

of entries in all tree tables, hence is bounded by: n+2
√

n(k/2−1) = n+
√

n(k−2).

We simplify this upper bound below to obtain a better intuition on the expected

experimental results. But first, we provide a lemma that can be used as a guideline for

design decisions concerning the implementation of the tree database.

Lemma 3.1. In the best case, the total number of tuple entries l in all descendants of
root table is negligible (l � n), assuming a relatively large number of vectors is stored:
n� k2 � 1.3.7

Proof. If the number of tuple entries in a tree table equals n, then the total number of

entries in all its descendants is bounded by l =
√

n(k−2) (see Theorem 3.3). Replacing

k with
√

n, we learn that l � n.

This shows that the entries in the root table (or the entries with is_also_root tag in

the concurrent tree), dominate.

Corollary 3.3. In the best case, the tree databases requires 1+ε tuple entries per state
to store n vectors, assuming a relatively large number of vectors is stored: n� k2 �
1.3.7.
(The concurrent tree uses 2w+1 bits per entry and the sequential tree 3w bits per entry.)

Proof. Follows from Lemma 3.1.

3.7The universe of all possible vectors is 2ku large (vectors are ku bits long). We are interested in storing a

very small subset of this universe. In practice, we encounter around 109 states with often no more than a few

hundreds of slots.
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3.4.2 Collapse Process Table

Since the leaves of the process table are directly connected to the root, the compression

ratios are easier to calculate. To yield optimal compression for the process table, a

more restrictive scenario, than described for the tree above, needs to occur. We require

p symmetrical processes with each a local vector of m = k/p. Related slots may only

lay within the bounds of these processes, take Si = {〈v, . . . ,v〉 | v ∈ {1, . . . ,m}} for i ∈
{1, . . . , p}. Each combination of different local vectors is inserted in the root table (also

if Si = {〈s,1, . . . ,1〉 | s ∈ {1, . . . ,m}}).

Theorem 3.4. In the best case, the process table requires a total of pw+ε bits to store
n vectors.

Proof. In the best case, the root tree table contains n entries and its children contain p
√

n
entries. The former requires pw bits per entry, and the latter k/pu bits per entry. The total

size of the process table becomes npw+ p
√

nk/pu bits. For relatively large n� k2 � 1
and large p� 1, this approaches pw+ ε bits per state.

In the worst case, we can take the same scenario as for the tree.

Theorem 3.5. In the worst case, the process table requires a total of pw+ ku bits per
state regardless of the number of vectors it stores.

Proof. No sharing occurs in the process table if all states s ∈ S have k identical slot

values: S = {〈v, · · ·× k . . . ,v〉 | v ∈ {1, . . . ,n}}. Therefore, the n pw-sized entries are

required in the root table, and n k/pu-sized entries in all p process tables.

3.4.3 Comparison Against Plain Hash Table Storage

Table 3.1 lists the achieved compressed sizes for states, as stored in a normal hash table,

a process table and a tree database. In the hash table, the size of slots might be small

(u ≤ w), which can be used to somewhat condense the states, hence the factor on k.
The same holds for the process tables in Collapse compression. Nonetheless, both

techniques use memory proportional to the state vector size or the number of processes

in the model. For the rest, these results follow directly from the presented theorems.

The worst case of the process table is clearly not as bad as the worst case achieved

by the tree. On the other hand, the best-case scenario is not as good as that from the tree,

which is the only technique that has the potential compress states to a constant number

of references. We also saw that the tree can reach near-optimal cases easily, placing

few constraints on related slots (on the same half). Therefore, we can expect the tree to

outperform the compression of process table in more cases, because the latter requires
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Table 3.1: Theoretical compression bounds for the (sequential and concurrent) tree

database, and the process table, compared to plain hash table storage (showing com-

pression as the number of w-bit units used per state).

Structure Worst case Best case

Hash table (ideal) u
w k u

w k

Process table (Collapse) p+ u
w k p+ ε

Sequential tree database (Algorithm 3.3) 3k−3 3+ ε
Concurrent tree database (Algorithm 3.4) 2k−2 2+ ε

more restrictive conditions. Namely, related slots can only be within the fixed bounds

of the state vector (local to one process).

Maximal sharing invalidates theworst-case analysis for the concurrent tree database,

but other sets of vectors can be thought up to still cause the same worst-case size. In

practice, we can also expect little gain from maximal sharing, since the likelihood of

similar subvectors decreases rapidly the larger these vectors are. For combinatorial S,
we can expect little gain from maximal sharing, since the number of tuples entries in

descendant tables are insignificant anyway compared to the root tuples (see Lemma 3.1).

3.4.4 Implementation Details

For the implementation of the concurrent tree database, the following requirements play

a role in determining the reference or index size w:

• as illustrated in Figure 3.11, the number of tuples that the tree table can fit is

bound by 2w (as we are using w-bit sized references),

• the parallel algorithm uses 1 extra tag bit per tuple entry,

• the atomic CAS instruction required to implement Algorithm 3.4 only works on

8, 16, 32 or 64 bit words (64-bit processors often provide an additional 128-bit

word CAS),

• the CAS operands need to be aligned at word-sized boundaries in memory, elim-

inating the possibility to use bucket sizes that are not a power of two, and

• the tree needs to accommodate as many vectors as possible in the available main

memory of modern systems (up and around 64GB).
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Table 3.2: The compressed state sizes, max number of states storable and max usable

memory for the tree tables, for different w and the best-case compression scenario.

Best case Max. states Usable memory (max)

w = 32 w = 64 w = 32 w = 64 w = 32 w = 64

Sequential tree database > 12 byte > 24 byte � 232 � 264 � 48GB � (48GB)2

Concurrent tree database > 8 byte > 16 byte < 231 < 262 16GB (16GB)2

The considerations lead to the logical conclusion that the only feasible reference

sizes are w = 32 bits and w = 64 bits. Table 3.2 summarizes the effects of these choices

on both the concurrent and the sequential tree table. From the second columns we see

that the concurrent tree can compress states to almost 8 byte, but in that case can only

store less than 231 states filling up 16GB of memory, only a part of the available memory

on modern machines. Lemma 3.1 ensures that the number non-root tuple entries do not

have to be a serious limitation to the number of states stored in the tree. It cannot even

store 232 states, because the table needs to accommodate the tag bit (see Figure 3.11).

Using 64-bit references these limitations are remedied, but the compressed sizes now

surpass the memory use of the sequential database with 32-bit references. The latter

also shows the surprising result that it can store more than 232 states. This follows from

the fact that the root table is separate and can grow beyond 232 entries because it is not

referenced inside any tree table (only on the local open sets in the reachability algorithm,

where we can use e.g. 5 byte references).

It would be tempting to also separate at least the root table in the concurrent tree

database. However, since we do not know up front how well the compression ratio will

be, or in other words whether Lemma 3.1 applies, resizing would be required. In the

previous section, we avoided resizing in the concurrent tree as a design decision with

the aim of improving scalability. Now that we have merged tables, resizing might be

possible again by using the tree_ref function to reconstruct states and reinsert them in

a larger table (rehashing the tuples). While indeed technically possible, it still seems

infeasible to implement because maximal sharing prevents incremental rehashing of

reference trees, as it might be the case that the rehashed tuples are no longer shared.

For these reasons, we decided to implement a concurrent tree with 31-bit references
(tree table buckets of 64 bits of which 2× 31 bits are used for references and 1 bit is
used for the tag). This way, we already can accommodate many more (large) states

than in a plain hash table, and use the remaining memory for in-memory open sets and

worst-case compression scenarios.
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3.5 Experiments

We performed experiments on an AMDOpteron 8356 16-core (4×4 cores) server with

64 GB RAM, running a patched Linux 2.6.32 kernel.3.8 All tools were compiled using

gcc 4.4.3 in 64-bit mode with high compiler optimizations (-O3).
We measured compression ratios and performance characteristics for the models

of the Beem database [Pel07] with three tools: DiVinE 2.2, Spin 5.2.5 and our own

model checker LTSmin [BPW10; LPW11a]. LTSmin implements Algorithm 3.4 using

a specialized version of the hash table fromChapter 2which inlines the tags as discussed
at the end of Section 3.3.2. Special care was taken to keep all parameters across the

different model checkers the same. The size of the hash/node tables was fixed at 228

elements to prevent resizing and model compilation options were optimized on a per

tool basis as described in Chapter 2. We verified state and transition counts with the

Beem database and DiVinE 2.2. The complete results with over 1500 benchmarks are

available online [Laa11].

3.5.1 Compression Ratios

For a fair comparison of compression ratios between Spin and LTSmin, we must take

into account the differences between the tools. The Beem models have been written in

DVE format (DiVinE) and translated to Promela. The translated Beem models that

Spin uses may have a different state vector length. LTSmin reads DVE inputs directly,

but uses a standardized internal state representation with one 32-bit integer per state slot
(state variable) even if a state variable could be represented by a single byte. Such an

approach was chosen in order to reuse the model checking algorithms for other model

inputs (like mCRL, mCRL2 and DiVinE [BPW09]). Thus, LTSmin can load Beem

models directly, but blows up the state vector by an average factor of three. Therefore,

we compare the average compressed state vector size instead of compression ratios.

Table 3.3 shows the uncompressed and compressed vector sizes for Collapse and

tree compression. Tree compression achieves better and almost constant state compres-

sion than Collapse for these selected models, even though original state vectors are

larger in most cases. This confirms the results of our analysis.

We also measured peak memory usage for full state-space exploration. The benefits

with respect to hash tables can be staggering for both Collapse and tree compression:

while the hash table column is in the order of gigabytes, the compressed sizes are in the

order of hundreds of megabytes. An extreme case is hanoi.3, where tree compres-

3.8https://bugzilla.kernel.org/show_bug.cgi?id=15618, see also Chapter 2
3.9The hash table size is calculated on the base of the LTSmin state sizes
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Table 3.3: Original and compressed state sizes and memory usage for LTSmin with

hash table (Table), Collapse (Spin) and tree compression (Tree) for a representative

selection of all benchmarks.

Model
Orig. State [Byte] Compr. State [Byte] Memory [MB]

Spin Tree Spin Tree Table3.9 Collapse Tree

at.6 68 56 36.9 8.0 8,576 4,756 1,227

firewire_tree.5 68 56 36.9 8.0 6,550 – 94

iprotocol.6 164 148 39.8 8.1 5,842 2,511 322

at.5 68 56 37.1 8.0 1,709 1,136 245

bakery.7 48 80 27.4 8.8 2,216 721 245

hanoi.3 116 228 112.1 13.8 3,120 1,533 188

telephony.7 64 96 31.1 8.1 2,011 652 170

anderson.6 68 76 31.7 8.1 1,329 552 140

frogs.4 68 120 73.2 8.2 1,996 1,219 136

phils.6 140 120 58.5 9.3 1,642 780 127

sorter.4 88 104 39.7 8.3 1,308 501 105

elev_plan.2 52 140 67.1 9.2 1,526 732 100

telephony.4 54 80 28.7 8.1 938 350 95

fischer.6 92 72 43.7 8.4 571 348 66

sion, although not optimal, is still an order of magnitude better than Collapse using

only 188 MB compared to 1.5 GB with Collapse and 3 GB with the hash table.

To analyze the influence of the model on the compression ratio, we plotted the in-

verse of the compression ratio against the state length in Figure 3.13. The line repre-

senting optimal compression is derived from the analysis in Section 3.4 and is linearly

dependent on the state size (the average compressed state size is close to 8 bytes: two

32-bit integers for the dominating root node entries in the tree).

With tree compression, a total of 279 Beem models could each be fully explored

using a tree database of pre-configured size, never occupying more than 4 GB memory.

Most models exhibit compression ratios close to optimal; the line representing the me-

dian compression ratio is merely 17% below the optimal line. The worst cases, with a

ratio of three times the optimal, are likely the result of combinatorial growth concen-

trated around the center of the tree, resulting in equally sized root, left and right sibling

tree nodes. Nevertheless, most sub-optimal cases lie within 200% of the optimal, sug-

gesting only one “full” sibling of the root node. (We verified this.)
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Figure 3.13: Compression ratios for 279 models of the Beem database are close to

optimal for tree compression.

Figure 3.14: Log-log scatter plot of tree-

compressed state sizes (smaller is better):

for all tested models, tree compression

uses less memory.

Figure 3.15: Log-log scatter plot of

LTSmin runtimes for state-space explo-

ration with either a hash table or tree com-

pression.
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Figure 3.16: Compression ratios for 279 models of the Beem database are close to

optimal for tree compression.

Figure 3.14 shows compressed state size of tree compression. The figure shows

more clearly how many cases come close to the optimal compression. We also see that

cases with bad compression are distributed evenly over the state length axis.

Figure 3.16 compares the compressed sizes of Collapse and tree compression. (We

could not easily compare compressed state space sizes due to differing number of states

for some models). Tree compression performs better for all models in our data set. In

many cases, the difference is an order of magnitude. While tree compression has an

optimal compression ratio that is four times better than Collapse’s (empirically es-

tablished), the median is even five times better for the models of the Beem database.

Finally, as expected (see Section 3.4), we measured insignificant gains from the intro-

duced maximal sharing.

3.5.2 Performance & Scalability

We compared the performance of the tree database with a hash table in DiVinE and

LTSmin. A comparison with Spin was already provided in Chapter 2. For a fair compar-
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ison, we modified a version of LTSmin3.10 to use the (three times) shorter state vectors

(char vectors) of DiVinE directly. Figure 3.17 shows the total runtime of 158 Beem

models, which fitted in machine memory using both DiVinE and LTSmin. On average

the runtime performance of tree compression is close to a hash table-based search (see

Figure 3.17(a)). However, the absolute speedup in Figure 3.17(b) shows that scalability

is better with tree compression, due to a lower memory footprint.

Figure 3.15 compares the sequential and multi-core performance of the fastest hash

table implementation (LTSmin lockless hash tablewith char vectors) with the tree database

(also with char vectors). The tree matches the performance of the hash table closely.

For both, sequential and multi-core, the performance of the tree database is nearly

the same as the fastest hash table implementation, however, with significantly lower

memory utilization. For models with fewer states, the tree database outperforms the

hash table, undoubtedly due to better cache utilization and lower memory bandwidth.
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Figure 3.17: Performance benchmarks for 158 models with DiVinE (hash table) and

with LTSmin using tree compression and hash table.

3.10this experimental version is distributed separately from LTSmin, because it breaks the language-

independent interface.
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3.6 Conclusions

First, the current chapter presented an analysis and experimental evaluation of the com-

pression ratios of tree compression and Collapse compression, both informed com-

pression techniques that are applicable in on-the-fly model checking. Both analysis

and experiments can be considered an implementation-independent comparison of the

two techniques. Collapse compression was considered the state-of-the-art compres-

sion technique for enumerative model checking. Tree compression was not evaluated as

such before. The latter is shown here to perform better than the former, both analytically

and in practice. In particular, the median compression ratio of tree compression is five

times better than that of Collapse on the Beem benchmark set. We consider this result

representative to real-world usage, due to the varied nature of the Beem models: the set

includes models drawn from extensive case studies on protocols and control systems,

and, implementations of planning, scheduling and mutual exclusion algorithms [Pel11].

Furthermore, we presented a solution for parallel tree compression by merging all

tree-node tables into a single large table, thereby realizing maximal sharing between

entries in these tables. This single hash table design even saves 50% in memory because

it exhibits the required stable indexing without any bookkeeping. We proved that the

consistency is maintained and use only one bit per entry to parallelize tree insertions.

Lastly, we presented an incremental tree compression algorithm that requires a fraction

of the table accesses (typically O(log2(k)), i.e., logarithmic in the length of a state

vector), compared to the original algorithm.

Our experiments show that the incremental and parallel tree database has the same

performance as the hash table solutions in both LTSmin and DiVinE (and by implication

Spin, as Chapter 11 confirms). Scalability is also better. All in all, the tree database

provides a win-win situation for parallel reachability problems.

Discussion. The absence of resizing could be considered a limitation in certain appli-

cations of the tree database. In model checking, however, we may safely dedicate the

vast majority of available memory of a system to the state storage.

The current implementation of LTSmin [LPW11a] supports a maximum of 231 tree

nodes, yielding about 2× 109 states with optimal compression. In the future, we aim

to create a more flexible solution that can store more states and automatically scales the

number of bits needed per entry, depending on the state vector size. Low-level issues

have hold us back thus far from implementing this, i.e., the ordering of multiple atomic

memory accesses across cache line boundaries behave erratically on certain processors.

While the current chapter discusses tree compression mainly in the context of reach-

ability, it is not limited to this context. For example, on-the-fly algorithms for the ver-
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ification of liveness properties can also benefit from a space-efficient storage of states

as demonstrated by Spin with its Collapse compression.

Future work. A few options are still open to improve tree compression. Static analy-

sis of the dependencies between transitions and state slots could be used to reorder state

slots and obtain a better balanced tree, and hence better compression (see Section 3.4).

Much like the variable ordering problem of BDDs [Bry86], finding the optimal reorder-

ing is an exponential problem (a search through all permutations). While, we are able

to improve most of the worse cases by automatic variable reordering, we did not yet

find a good heuristic for at least all Beem models.

Finally, it would also be interesting to generalize the tree database by accommodat-

ing for the storage of vectors of different sizes.

Final remark. The small tree node entries cover a limited universe of values: 1+2×
log2(n). This is an ideal case to employ key quotienting using Cleary table [Cle84] or

very tight hash tables [GV03]. A solution for this is presented in the subsequent chapter.

The result is a parallel tree database implementation that in the (common) optimal case

uses only one integer (4 bytes per state), halve of thememory requirements of the current

tree database.
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A Parallel Compact Hash Table

Alfons Laarman, Steven van der Vegt

Abstract
We present the first parallel compact hash table algorithm. It delivers high per-

formance and scalability due to its dynamic region-based locking scheme with only

a fraction of the memory requirements of a regular hash table.

About this chapter: The current chapter is based on the paper “A Parallel Compact
Hash Table”, which was published at MEMICS 2011 [VL12].

The original paper [VL12] remains largely the same, modulo some small textual im-
provements. We removed the general introduction. We added an extra section de-
tailing the use of the concurrent Cleary table in the concurrent tree database from
Chapter 3. This section requires no new experiments, as we can theoretically show
that the compression ratio of the new Cleary tree is directly related to the compres-
sions obtained with the tree (Section 3.5 demonstrates that most results lie close to
the optimum).

We also added a section that establishes an information-theoretic lower bound on the
storage requirements for typical model checking problems. We show that the Cleary
compact tree can actually reach this bound in theory when compression is optimal.
The experiments from Section 3.5 already demonstrated that this is more often the
case than not in practice.

4.1 Introduction

Data structures, like hash tables, are crucial building blocks for these systems and many

have been parallelized [Cli07; HS08] to prevent a multi-core crisis. A hash table stores

a subset of a large universe U of keys and provides the means to lookup individual keys

in constant time. It uses a hash function to calculate an address h from the unique key.
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The entire key is then stored at its hash or home location in a table (an array of buckets):
T [h]← key. Because often |U | � |T |, multiple keys may have the same hash location.

We can handle these so-called collisions by calculating alternate hash locations and

searching for a key in the list of alternate locations, a process known as probing.
In the case that |U | ≤ |T |, a hash table can be replaced with a perfect hash function

and a bit array, saving considerable memory. The former ensures that no collisions can

occur, hence we can simply turn “on” the bit at the home location of a key, to add it to

the set. Compact hashing [Cle84; DM09] generalizes this concept for the case |U |> |T |
using a technique called key quotienting. Hashing in T is done using the key’s quotient,
while T stores only the part of the key that was not used for hashing: the remainder.
The complete key can now be reconstructed from the value in T and the home location

of the key. If, due to collisions, the key is not stored at its home location, additional

information is needed. Cleary [Cle84] solved this problem with very little overhead by

imposing an order on the keys in T and introducing three administration bits per bucket.

The bucket size b of Cleary compact hash tables is thus dependent on U and T
as follows: b = w−m+ 3, with the key size w = �log2(|U |)� and m = �log2(|T |)�.
Assuming that all the buckets in the table can be utilized, the compression ratio obtained

is thus close to the information-theoretic lower bound of storing a subset of U in a list

T, where boptimal = w−m+1 [GV03]. Note that good compression ratios ( b
w ) are only

obtained when m is significant with respect to w.

Problem description. Compact hashing has never been parallelized, even though

it is ideally suited to be used inside more complex data structures, like tree tables (see

Chapter 3) and binary decision diagrams (BDDs) [DLP13]. Such structures maintain

large tables with small pieces of constant-sized data, like pointers, yielding an ideal m
and w for compact hashing. But even more interesting than obtaining some (constant-

factor) memory reductions, is the ability to store more information in machine-sized

words, for efficient parallelization depends crucially on memory alignment and low-

level operations on word-sized memory locations [Cli07; LPW10a].

Contributions. We present an efficient scheme to parallelize both the Cleary table

and the order-preserving bidirectional linear probing (BLP) algorithm that it depends

upon. The method is lockless, meaning that it does not use operating system locks,

thereby providing the performance required for use in high-throughput environments,

like in BDDs, and avoiding memory overhead.

Our algorithm guarantees read/write exclusion, but not on the lowest level of buck-

ets, as in [Cli07; LPW10a], nor on fixed-size regions in the table as in region-based
locking, aka striped locking, but instead on the logical level of a cluster: a maximal
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subarray T [i . . . j] such that ∀x : i≤ x≤ j =⇒ T [x].occ ,where T [x].occ denotes a filled

bucket. We call this novel method: dynamic region-based locking (DRL).

Finally, we show how the Cleary table can be used in tree compression to almost

halve the compressed sizes for state vectors inmodel checking. An information-theoretic

model for the state entropy demonstrates that this compression is close to the optimum.

4.2 Background

In the current section, we explain the Cleary table and the BLP algorithm it uses. Fi-

nally, we discuss some parallelization approaches that have been used before for hash

tables and the issues that arise when applying them to the Cleary table.

For this discussion, the distinction between open-addressing and chained hash ta-

bles is an important one. With open addressing, the probing for alternate locations is

done inside the existing table as is done in BLP and hence also in Cleary tables. While

chained or closed-addressing hash tables resolve collisions bymaintaining (concurrent)

linked lists at each location in the table.

4.2.1 Bidirectional Linear Probing

The simplest form of open addressing is linear probing (LP): alternate hash locations

in the table are calculated increasing by one to the current location. While this probing

technique provides good spatial locality, it is known for producing larger clusters, i.e.,

increasing the average probing distance [Cli07].

BLP [AK74] mitigates the downside of LP, by enforcing a global order on the keys

in the buckets using a monotonic hash function: if k1 < k2 then hash(k1) ≤ hash(k2).
Therefore, the lookup of a key k boils down to: compare the k to the bucket at the home

location h, if T [h]> k, probe left linearly (h′ ← h−1), until T [h′] = k. If k is not present

in the table, the probe sequence stops at either an empty bucket, denoted by ¬T [h′].occ,
or when T [h′]< k. If T [h]< k, do the reverse.

To maintain order during an insert of a key, the BLP algorithm needs to move part

of a cluster to the left or the right in the table, thereby making space for the new key at

the correct (in-order) location. This move is usually done with pair-wise swaps, start-

ing from the empty bucket at one end of the cluster. Therefore, this is referred to as

the swapping operation. For algorithms and a more detailed explanation, please refer

to [AK74; Veg11].
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4.2.2 A Compact Hash Table Using the Cleary Algorithm

As explained in Section 4.1, Cleary’s compact hash table [Cle84] stores only the re-

mainder of a key in T . With the use of the sorting property of the BLP algorithm and 3

additional administration bits per bucket, the home location h of the remainder can be

reconstructed, even for colliding entries that are not stored at their home location. For

this to work, the hash function needs to be reversible in addition to being monotonic.
[Cle84] describes some solutions for this. We will use hash−1 for the reversed version.

The rem function is the complement of the monotonic hashing function and calcu-

lates the remainder, e.g., rem(x)= x%10 and hash(x)= x/10.4.1 A group h is a sequence

of successive remainders in T with the same home location h. All adjacent groups in T
form a cluster, which by definition is enclosed by empty buckets (see Section 4.1).

The first administration bit occ is used to indicate occupied buckets. The virgin bit

is set on a bucket h to indicate the existence of the related group h in T . And finally, the

change bit marks the last (right-most) remainder of a group, such that the next bucket

is empty or the start of another group.

Figure 4.1 shows the Cleary table with |T |= 10 that uses the example hash and rem
functions from above. A group h is indicated with gh. Statically, keys can be recon-

structed by multiplying the group number by 10, and adding the remainder: key( j) =
group(T [ j])× 10+T [ j] = hash−1(group(T [ j]))+T [ j]. For example, bucket 6 stores

remainder 8 and group(6) = 4, therefore key(6) = 4×10+8 = 48.
The algorithms maintain the following invariants [Cle84]: the amount of change

and virgin bits within a cluster is always equal, and, when a virgin bit is set on a bucket,

this bucket is always occupied.

7 9 3 4 8 8 0 9

1 2 3 4 5 6 7 8 9 10
vc

rem

g0 g3 g4 g6

Figure 4.1: Example Cleary table with 10 buckets containing 8 remainders, 2 clusters

and 4 groups, representing the keys: 7, 9, 33, 34, 38, 48, 60, 69. The upper two rows

of the buckets represent the virgin and the change bits. The occupied bit is not shown

(buckets without values are unoccupied).

4.1To increase the performance of the hash function, it is common practice to apply an invertible ran-

domization function to the key before hashing it [AK74; Cle84; GV03]. Throughout the current chapter, we

assume keys to be randomized.
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The find function in Algorithm 4.1 makes use of these invariants as follows: it

counts the number of virgin bits between the home location h and the left end of the

cluster in c (see vcount-left). Since the last encountered virgin bit corresponds to the

left-most group, the group h can now be located by counting c change bits to the right

(Line 13-17). The first iteration where c = 1 marks that start of group h. Hence, the

algorithm starts comparing the remainders in T [ j] with rem(k) at Line 14, and returns

FOUND when they are equal. Once c becomes 0 again, the group h did not contain the

key, and NOT_FOUND is returned at Line 18.

Algorithm 4.1 Functions for finding (a) and inserting (b) a key in a Cleary table.

1: procedure vcount-left( j)
2: c← 0 � count variable

3: while T [ j].occ do
4: c← c+T [ j].virgin
5: j← j−1
6: return j,c
7: procedure find(k)
8: j← hash(k)
9: if ¬T [ j].virgin then

10: return NOT_FOUND � false
11: ( j,c)← vcount-left( j)
12: j← j+1
13: while c �= 0∧T [ j].occ do
14: if c = 1∧T [ j] = rem(k) then
15: return FOUND � true
16: c← c−T [ j].change
17: j← j+1
18: return NOT_FOUND � false

Require: (∃i : ¬T [i].occ)∧¬find(k)
1: procedure put(k)
2: h← hash(k)
3: ( j,c)← vcount-left(h)
4: T [ j]← rem(k)
5: T [ j].occ← 1
6: T [ j].change← 0
7: while c �= 0 do
8: if T [h].virgin∧ c = 1∧
9: T [ j+1]> rem(k) then

10: return
11: c← c−T [ j+1].change
12: swap(T [ j+1],T [ j])
13: j← j+1
14: if T [h].virgin then
15: T [ j−1].change← 0
16: T [ j].change← 1
17: T [h].virgin← 1

The put function in Algorithm 4.1b inserts the remainder of k in the empty bucket

left of the cluster around h at Line 4-6 and swaps it in place at Line 7-13 (swap only

swaps the remainder and the change bit). In this case, in place means two things: within

group h as guaranteed by Line 7 and Line 8, and sorted by remainder value as guaranteed

by Line 9. Furthermore, put guarantees the correct setting of the administration bits.

First, the occ bit is always set for every inserted element at Line 5. Also, before return,

the virgin bit is always set for T [h] (see Line 8 and Line 17).

To understand the correct setting of the change bits, we introduce an invariant: at
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Line 8, group(T [ j + 1]) ≤ h. Consequently, a return at Line 10, means that the re-

mainder is not swapped to the end of group h, therefore the change bits do not require

updating. On the other hand, if the while loop terminates normally, the remainder is

swapped to the end of group h, therefore the change bit needs to be set (Line 16). If

group h already existed (T [h].virgin = true), the previous last remainder of the group

needs to have its change bit unset (Line 15).

We illustrate put with an example. Inserting the key 43 into the table of Figure 4.1

gives a h = hash(43) = 4 and rem(43) = 3. Searching for the empty bucket left of the

cluster at Line 3, results in j = 2 and c = 2, since there are two virgin bits in buckets

3 and 4. The remainder is initially inserted in T [2] (Line 4-6). At Line 12 the remain-

der in bucket 2 is swapped with bucket 3 (the virgin bit remains unchanged). These

steps are repeated until j points to bucket 5. Then, at Line 11 c becomes 1, indicating

group(T [ j+1]) = h. In the next iteration ( j′ = j−1), the condition at Line 8-9 holds,

meaning that the remainder is at its correct location: at the start of g4.

If instead, we were inserting the key 49, c would have become 0, ending the while
loop with j = 6 (Line 7), after swapping the remainder 9 to bucket 6. Because g4
already existed, the previous change bit (now on T [5]) is unset by Line 14-15. Finally,

the change bit at bucket 6 is set by Line 16.

To make groups grow symmetrically around their home locations and keep probing

sequence shorter, it is important that the put function periodically also starts inserting

remainders from the right of the cluster (not shown in the algorithm). Our experimen-

tal results confirm that a random choice between the two insert directions yields the

same probe distances as reportedly obtained by the optimal replacement algorithms

in [AK74].

4.2.3 Related Work on Parallel Hash Tables

In the current subsection, we recapitulate some relevant, existing approaches to paral-

lelize hash tables. With relevant, we mean parallel hash tables that can efficiently store

smaller pieces of data (remember, from the introduction, that the key size w should be

significant with respect to m for compact hashing to be effective). Furthermore, the

scalability should be good for high-throughput systems like inside BDDs.

We use the following abbreviations:

Many parallel hash table implementations are based on chaining. More advanced

approaches even introducemore pointers per bucket, for example: split-ordered lists [HS08,

Sec. 13.3], which: “move[s] the buckets among the [keys], instead of moving the [keys]

among the buckets”. While these kind of hash tables lend themselves well for maintain-

ing small sets in parallel settings like graphical user interfaces, they are less suited for

our goals for two reasons: (1) the pointers require relatively much additional memory
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Abbr. Meaning
LP Linear Probing

BLP Bidirectional Linear Probing

LHT Lockless Hash Table

RBL Region-Based Locking

DRL Dynamic Region-based Locking

PCT Parallel Cleary Table

compared to the small bucket sizes that are so typical for compact hashing and (2) the

pointers increase the memory working set, which is disastrous for scalability on modern

computer systems with steep memory hierarchies [LPW10a; Cli07].

Slightly more relevant to our cause is the use of operating system locks to make

access to a hash table (chained or open addressing) concurrent. One lock can be used

for the entire table, but this is hardly scalable. Alternatively, one lock can be used

per bucket, but this uses too much memory (we measured 56 bytes for posix locking

structures, this excludes any memory allocated by the constructor). A decent middle

way is to use one lock for a group of buckets. The well-known striped hash table

[HS08, Sec. 13.2.2], does this for chained tables. To employ the same idea for an open-

addressing table, it does not make sense to ‘stripe’ the locks over the table buckets.

Preferably, we group subsequent buckets into one region, so that only one lock needs to

be taken for multiple probes. We dub this method region-based locking (RBL).

Lockless hash tables avoid the use of operating system locks entirely. Instead,

atomic instructions are used to change the status of buckets (“locking” in parentheses).

A lockless hash table (LHT) is presented in Chapter 2, based on ideas from [Cli07]. It

uses open addressing with LP and even modifies the probe sequence to loop over cache

lines (“walking the line”) to lower the memory working set and achieve higher scalabil-

ity. For maximum scalability, only individual buckets are “locked” using one additional

bit; the only memory overhead that is required.

None of the above-mentionedmethods are suitable for ordered hash tables, like BLP

and Cleary tables. First the regions in RBL are fixed, while the clusters in ordered tables

can be at the boundary of a region. While this could be solved with more complicated

lockingmechanism, it would negatively affect the performance of RBL,which is already

meager compared to the lockless approaches (see Sec. 4.6). The lockless approach, in

turn, also fails for ordered hash tables since it is much harder to “lock” pairs of buckets

that are swapped atomically. And even if it would be technically possible to efficiently
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perform an atomic pairwise swap, it would severely increase the amount of (expensive)

atomic operations per insert (Section 4.3.2 discusses the complexity of the swapping

operations).

[Veg11] introduced a lockless algorithm for BLP that “locks” only the cluster during

swapping operation. find operations do not require this exclusive access, for an ongoing

put operation can only cause false negatives that can be mitigated by another exclusive
find operation. However, this method is not suitable for the Cleary table, since its find

function is probe sensitive, because it counts the virgin and change bits during probing.

Therefore, it can cause false positives in case of ongoing swapping operations. The

current chapter is an answer to the future work of [Veg11].

4.3 Dynamic Region-Based Locking

In the current section, we first present dynamic region-based locking (DRL): a locking

strategy that is compatible with the access patterns of both the BLP algorithm with its

swapping property and the Cleary table with its probe-sensitive lookup strategy. We

limit our scope to a procedure that combines the find and put functions, described in

the previous section, into the find-or-put function, which searches the table for a key

k and inserts k if not found. The reason for this choice is twofold: first, it covers all

issues of parallelizing the individual operations, and second, the find-or-put operation

is sufficient to implement advanced tasks like model checking (see Chapter 1).

Additionally, in Section 4.3.2, we show that DRL only slightly increases the number

of memory accesses for both BLP and PCT. From this and the limited number of atomic

operations that it requires, we conclude that its scalability is likely as good as LHT’s,

which we can indeed confirm in Section 4.6. We end with a correctness proof of DRL

in Section 4.3.3.

4.3.1 Parallel FIND-OR-PUT Algorithm

In the previous section, we have seen that the lockless method presented in [Cli07;

LPW10a], is not suitable for Cleary tables, since it would require atomic operations on

multiple pair-wise swaps. Region-based locking is neither appropriate, since clusters

grow “organically” and may span multiple fixed-size regions. Here, we introduce a

dynamic region-based locking (DRL) scheme that can be used in combination with

both the BLP algorithm and the Cleary compact hash table with its probe-sensitive find

operation. It uses one extra bit field per bucket (lock) to provide light-weight mutual

exclusion. This method has limited memory overhead and does not require a context

switch and additional synchronization points like operating system locks.
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The atomic functions try-lock and unlock control this bit field and have the fol-

lowing specifications: try-lock requires an empty and unlocked bucket and guarantees

an empty, locked bucket or otherwise fails. unlock accepts multiple buckets and en-

sures all are unlocked upon return (each atomically, the multiple arguments are merely

syntactic sugar). These functions can be implemented using the processor’s cas(a,b,c)
operation, which updates a word-sized memory location at a with c atomically, if and

only if the condition b holds for location a [HS08, Ch. 5.8]. cas returns the initial value

at location a, used to evaluate the condition.

Algorithm 4.2 shows the dynamic locking scheme for the find-or-put algorithm.

First, at Line 3, the algorithm tries to write k to T [h], only if the home location h is

empty and unlocked (¬T [h].lock∧¬T [h].occ). The function grab-unocc-empty does

this and returns the previous value of the bucket as old. The success of the operation can

be determined from old (see Line 4). If a lock or full bucket was detected, the algorithm

is restarted at Line 7.

Algorithm 4.2 Concurrent bidirectional linear find-or-put algorithm

1: procedure find-or-put(k)
2: h← hash(k) � non-excl. write:
3: old← grab-unocc-empty(T [i],k)
4: if ¬old.occ∧¬old.lock then
5: return INSERTED

6: else if old.lock then
7: return find-or-put(k)� retry
8: if find(k) then � non-excl. read
9: return FOUND

10: left← cl-left(h)
11: right← cl-right(h)

12: if ¬try-lock(T [left]) then
13: return find-or-put(k)� retry
14: if ¬try-lock(T [right]) then
15: unlock(T [left])
16: return find-or-put(k)� retry
17: if find(k) then � exclusive read
18: unlock(T [left], T [right])
19: return FOUND

20: put(k) � exclusive write
21: unlock(T [left], T [right])
22: return INSERTED

From Line 10 onwards, the algorithm tries to acquire exclusive access to the cluster

around T [h]. Note that T [h] is occupied. At Line 10 and Line 11, the first empty location

left of and right of h are found in T . If both can be locked, the algorithm enters a local

critical section (CS) after Line 16, else it restarts at Line 13 or Line 16 (after releasing

all taken locks). In the CS, the algorithm can now safely perform exclusive reads and

exclusive writes on the cluster (Line 17 and Line 20).

DRL is suitable in combination with the find and put operations of both BLP and

the Cleary table. If we are implementing the BLP algorithm using this locking scheme,

then find at Line 8 can perform a non-exclusive read (concurrent to any ongoing write
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operations). The possibility of a false negative is mitigated by an upcoming exclusive

read at Line 17. For the Cleary algorithm, however, the non-exclusive read needs to be

dropped because the probe-sensitive lookup mechanismmight yield a false positive due

to ongoing swapping operations.

4.3.2 Complexity and Scalability

Two questions come to mind when studying the DRL: (1) What is the added complex-

ity compared to the sequential BLP or Cleary algorithm? (2) What scalability can we

expect from such an algorithm. Below, we discuss these matters.

For ordered hash tables, like BLP and Cleary tables, the cluster size L depends on

the load factor α , as follows: L = (α − 1)−2− 1 [AK74], where α = n/|T | and n the

number of inserted keys. Since DRL probes to the empty buckets at both ends of the

cluster, it requires (α−1)−2+1 bucket accesses. When implementing the Cleary table

using DRL, this is the complexity for the find-or-put operation independent whether

an insert occurred or not, because in both cases it “locks” the entire cluster. Note that

we do not count the bucket accesses of the called find and the put operations, since, in

theory, these could be done simultaneously by the cl-left and cl-right operations. In

practice, this seems unnecessary, because the cluster will be cache hot after locking it.

The sequential Cleary find and put algorithms have to probe to one end of the

cluster to count the virgin and change bits, hence require more bucket accesses: 1/2(α−
1)−2 + 1/2 (again assuming that we can count both in one pass or that the second pass

is cached and therefore insignificant). We conclude that Cleary+DRL (with one worker

thread) is only twice as slow as the original Cleary algorithm.

For BLP+DRL the story changes, but the outcome is the same. The sequential BLP

algorithm does not have to probe to the end of the cluster and is empirically shown to be

much faster than LP [AK74]. However, DRL+BLP is correct with non-exclusive reads

as long as an unsuccessful find operation is followed by an exclusive find to mitigate

false negatives, as is done in Algorithm 4.2. But false negatives are rare, so again the

parallel find operation is not much slower than the sequential one. The same holds

for the put operation, since the sequential version on average needs to swap half of an

entire cluster and the parallel version “locks” the whole cluster.

Scalability of DRL can be argued to come from three causes: first, the I/O complex-

ity (in memory access) of the parallel algorithm is the same the sequential versions, as

shown above, second, the number of (expensive) atomic operations used is low, DRL

uses zero, one or two (with the very rare possibility of several retries), and third, the

memory accesses are all consecutive. We analyze the third cause in some more detail.

To mitigate the effect of slowmemories, caching is important for modern multi-core

systems. Each memory access causes a fixed region of memory, known as a cache line,
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to be loaded into the CPU’s cache. If it is written to, the entire line is invalidated and has

to be reload on all cores that use it; an operation which is several orders of magnitude

more expensive than other operations using in-cache data. We have shown before that

highly scalable hashing algorithms can be obtained by lowering the number of cache

lines that are accessed: the memory working set (see Section 2.2).

The open-addressing tables discussed in the current chapter exhibit only consecutive

memory accesses. And while it seems that the amount of buckets probed in the Cleary

algorithm is high, typically few cache lines are accessed. For example, there are 26

bucket accesses on average for α = 0.8, while on average only �26/64�+26/64 = 1.41
cache lines are accessed, assuming a bucket size of 1 byte and a cache line size of 64

byte. When α grows to 0.85, we get 1.71 cache line accesses on average, and when

α = .9, 3.59 accesses. Note finally that with buckets of 1 byte, the cleary algorithm can

store keys of more than 32 bit for large tables, e.g, if m = 28, then w = b+m−3 = 8+
28−3 = 33, while the non-compacting hash table requires five bytes per bucket to store

as much data. In conclusion, we can expect Cleary+DRL to perform and scale good at

least up to load factors of 0.8 and exhibit competitive performance to that of Chapter 2.

4.3.3 Proof of Correctness

To prove correctness, we show that Algorithm 4.2 is linearizable, i.e., its effects appear
instantaneously to the rest of the system [HS08, Ch. 3.6]. Here, we do this in a con-

structive way: first, we construct all possible local schedules that Algorithm 4.2 allows,

then we show by contradiction that any interleaving of the schedules of two workers al-

ways respects a certain critical section (CS) of the algorithm, and finally, we generalize

this for more workers. From the fact that CS is the only place where writes occur, we

can conclude linearizability.4.2 We assume that all lines in the code can be executed as

atomic steps.

If the home location of a key k is empty, correctness follows from the properties of

the atomic cas operation at Line 3. For every other table accesses (Line 17 and Line 20),

we prove that never two workers can be in their CS for the same cluster.

The ‘→’ operator is used to denote the happens-before relation between those steps

[HS08]. For example, ‘cl-righti(x)→ try-locki(x)’ means that a Worker i always

first executes cl-right writing to the variable x (Line 11), and subsequently calls try-

lock using (reading) the variable x. We omit the subscript i, if it is clear from the

context which worker we are talking about. We concern ourselves with the following

local happens-before order: cas(h)� cl-left(l)→ cl-right(r)→ try-lock(l)�
4.2 For completeness sake, we should also mention that we only allow for false positives to occur in non-

exclusive reads and that unsuccessful non-exclusive reads are always followed by a read operation in the CS,
i.e., an exclusive read.
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try-lock(r)� (occ(l)⊕occ(r)), where occ(x) signifies a fill of a bucket (T [x].occ←
1) and� indicates a happens-before relation dependent on a condition. Depending on

the replacement end (left or right), put fills one of the buckets at the end of the cluster,

hence the exclusive-or: ⊕. Furthermore, we write li, ri and hi for: the left variable, the
right variable and the home-location hi = hash(k), all local to a Worker i.

Lemma 4.1. Algorithm 4.2 ensures that when two workers try to enter their CS for the
same cluster, then: li = l j ∨ ri = l j ∨ li = r j ∨ ri = r j.

Proof. Assume Worker Wi is in its CS, and Worker Wj is about to enter the CS for

the same cluster. Since Wi is in its CS, we have T [li].lock and T [ri].lock. Wi is going

to perform the step occ(li) or occ(ri). Note that these operations might influence the

clusters, as two clusters separated by only one empty bucket, may become one upon

filling the bucket.

Worker Wj has yet to enter its CS, executing the steps: cas(h j)→ cl-left(l j)→
cl-right(r j). With a generalizable example, Figure 4.2 illustrates five non-trivial cases

that we consider, where Wj starts with a h j respective to the cluster li, ri. Clusters in T
are colored gray and we assume that they are separated by one empty bucket (white), be-

cause more empty buckets makes the resulting cases only more trivial. There are several

representative home-locations marked with ha to he (e.g., choosing a different location

within the same cluster leaves the results of the cl-left and cl-right operations un-

affected). Locations on the right of ri follow from symmetry. Below, we consider the

outcome of all the cases for h j. We use the fact that there are no empty buckets between

l j and r j.

h j = ha: Because T [h j].occ, cas(h j) fails. Wj performs the steps cl-left(l j)→
cl-right(r j). Since l j = 1 < r j = 3 < li, Lemma 4.1 is vacuously true.

h j = hb: This location is unoccupied and not locked, so the cas(h j) succeeds and

the algorithm returns never reaching CS, making Lemma 4.1 vacuously true.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ha hb hc hd he

li ri

locked by Wi

Figure 4.2: Several clusters and empty positions. The cluster 8-10 is locked by worker

Wi. Location marked with ha to he potential home locations for worker Wj.
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h j = hc: This location is occupied so cas(h j) fails. Next, the step cl-left(l j) results
in l j = 3. The result r j of cl-right is dependent on the state ofWi. IfWi has not already

performed any occ or did perform occ(11), then r j = 7. If Wi has executed occ(7), then
r j = 11. So, r j = 7 = li∨ r j = 11 = ri.

h j = hd : The success of the cas(h j) depends on the state of Wi. If Wi has not

performed any steps, then cas(h j) restarts the algorithm at Line 7. If Wi has performed

occ(7), then Wj continues with cl-left(l j) and cl-right(r j), resulting in l j = 3,r j =
11 = ri. If Wi has performed step occ(11), then l j = 7 = li,r j = 15.

h j = he: Since he is occupied, cas(h j) fails again. Wj continues with the cl-left(l j)
and cl-right(r j). The result depends on if Wi has executed occ(7) or occ(11). We dis-

tinguish five interleavings:

1: cl-left(l j)→ cl-right(r j)→ (occi(7)⊕occi(11))⇒ l j = 7,r j = 11 = ri
2: cl-left(l j)→ occi(7)→ cl-right(r j)⇒ l j = 7 = li,r j = 11 = ri
3: cl-left(l j)→ occi(11)→ cl-right(r j)⇒ l j = 7 = li,r j = 15
4: occi(7)→ cl-left(l j)→ cl-right(r j)⇒ l j = 3,r j = 11 = ri
5: occi(11)→ cl-left(l j)→ cl-right(r j)⇒ l j = 7 = li,r j = 15

Thus, under the above assumption: li = l j ∨ ri = l j ∨ li = r j ∨ ri = r j.

Theorem 4.1. No two workers can be in their CS at the same time and work on the
same cluster such that li ≤ l j ≤ ri∨ li ≤ r j ≤ ri∨ (l j ≤ li∧ r j ≥ ri).

Proof. By contradiction, assume the opposite: both Wi and Wj reach their CS and li ≤
l j ≤ ri∨ li≤ r j ≤ ri∨(l j ≤ li∧r j ≥ ri). Without loss of generality because of symmetry,

we assume again Wi to have entered its CS first. The steps for Wj to arrive in its CS are:

cas(h j)→ cl-left(l j)→ cl-right(r j)→ try-lock(l j)→ try-lock(r j).
The remaining step for Wi is: occ(li)⊕occ(ri)
Wi hash performed try-lock(li)→ try-lock(ri), thus we have T [li].lock∧T [ri].lock.
According to Lemma 4.1 that at least one of the locations l j and r j equals either li
or ri. Therefore, Wj will always fail with either try-lock(l j) or try-lock(ri). This

conclusively proves mutual exclusion for two workers. Since additional workers cannot

influence Wj in such a way that Lemma 4.1 is invalidated, Theorem 4.1 also holds for

N > 2 workers.

Absence of deadlocks (infinite restarts at Line 7, Line 13 and Line 16), follows from

the fact that all “locks” are always released before a restart or a return. Furthermore,

we have absence of livelocks, because workers first “lock” the left side of a cluster. The

one which locks the right side first, wins. With a fair scheduler the algorithm is also

starvation-free, because each worker eventually finished its CS in a finite number of

steps. From this, we conclude that Algorithm 4.2 is linearizable.
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4.4 Concurrent Cleary Tree Compression

In the current section, we show how the Cleary table can be used in the tree database,

to almost halve its memory usage in the ideal case. We will call the keys inserted in
the tree from now on ‘states’ to distinguish them from the keys stored in hash tables.
Like in Section 3.4, we assume that n states of length k > 1 are stored in the tree, that

references can be encodes as z-bit indices in the tree table, and that the u-bit parts of

the states can also be stored in the place of a reference, i.e. u < z. (We use z for the

reference size instead of w used in Section 3.4 to avoid confusion with the size of the

universe w = |U |.) For simplicity, we also assume that hash tables in the tree have a

size (number of buckets) that is a power of 2. and that the same holds for k.
Tree compression was introduced in the Chapter 3. The techniques recursively in-

dexes keys of fixed lengths k in a binary tree of tuples. With the understanding that tree

vectors have a certain structure, i.e. in the context of model checking they consist of an

array of u-bit values for the variables in the model, we can see that the tree introduces

sharing between similar sub-vectors of different keys inserted into the tree store.

Section 3.4 explains how the concurrent tree uses a single table with buckets of size

2z−1 bits, to store tuples with z bit values and one root tag. This single-table solution

avoids resizing and additional indexing tables, to increase scalability. We chose z = 31
in the implementation, to keep compressed sizes low (approaching 64 bit) and store

close to 231 states in the optimal case (which experiments showed to be very common).

The dimensions of the concurrent tree table are ideal for the Cleary table: w = 2z =
62 andm= z= 31 results in compressed bucket sizes of b=w−m+3= 35 bits. Almost

half of the original size. However, the Cleary table does not provide stable indices, as

values are moved across buckets to maintain an order. Stable indices are required in the

tree table, because the tuples stored in the table refer to other tuples in the same table.

To still use the Cleary table in the tree, we now drop the no-resizing requirement,

reasoning that instead of resizing, the reachability search explained in Section 3.3 can

also be reinitiated completely with a larger table size. Moreover, as we will see, several

other benefits can be attained when dropping this requirement, such as a greater storage

capacity in the tree.

To use the Cleary table in the tree, we first split the single table into a table of roots

and a table of internal tree nodes. We no longer need the tag bit to distinguish roots from

other tuples in the tree, raising z from 31 to 32. Figure 4.3 shows the new configuration,

with a single vector stored in the tree. The arrows represent the references in the tree.

Since only the internal table has incoming references, it is the only table that needs to

have less than 2z buckets. As a consequence, the roots table can grow larger than 2z and

thus the tree can store more than 2z states (the size of the internal store does not have to

118



4

4.4 Concurrent Cleary Tree Compression

4 1

6 5

1 3

3 5

internal

2 5

roots

z z
z z

l = 2q ≤ 2z

n = 2r

Figure 4.3: New tree table storing a single vector 〈3,5,5,3,4,1〉. To obtain the Cleary

tree, the roots table can be implemented with a Cleary table.

be a limitation here according to Lemma 3.1).

It is easy to establish that the new configuration does not use more memory com-

pared to concurrent tree with a single table presented in Section 3.3, although it is harder

to fill available memory precisely now that two tables have to compete for space. To

analyze this, we disregard maximal sharing, which over-approximates the compression.

In practice, maximal sharing is also unlikely to have large effect in practice Section 3.4.

In the new tree table, we can use the Cleary table as root table. This results into a

reduction of memory use:

Lemma 4.2. Disregarding maximal sharing, the Cleary tree uses at least r− 3 less
memory per state than the concurrent tree, where r is the log2 size of the root table in
Figure 4.3.

Proof. The function Tk : Nk → N describes the index of root tuple entries for all s ∈
S ⊆ Nk vectors in the concurrent tree, with |S| = n. By Theorem 3.1, this function is

injective, therefore all (different) n vectors have a unique root: There are n root tuples.

If k > 2, each root points to 2 internal tuple entries. Take the left child, it is described

by T�k/2�, representing the tree table indices of tuples for all n1 ≤ n different left halves

S′ = {s ∈N�k/2� | ∃s′ ∈N�k/2� ∧ s+ s′ ∈ S}. Since also this subtree is injective, n1 = |S′|
tuple entries are stored to represent these vector halves. We can repeat the argument at
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each internal tree node, and end up with n+
k−2
∑

i=1
ni tuple entries, as there is no sharing

between entries.

The Cleary tree, can be described by a function TCk = C(T�k/2�,T�k/2�), where C

represents the index in the Cleary table where the root tuple is stored (the fact that

this index is not stable does not matter, because they are not referenced in the tree).

Following the same reasoning as for the concurrent tree, we see that the Cleary tree

also stores n+
k−2
∑

i=1
ni tuple entries for the same vector set S. But now the n root entries

are stored in the Cleary table.

The
k−2
∑

i=1
ni tuple entries of internal entries are stored using using 2z bits in the Cleary

tree; less than the 2z+1 bits in the concurrent tree. For each state in the tree, one tuple

is stored in the root table (see Section 3.4). In the concurrent Cleary table, the size of

the tuples stored (the universe) depends on l = 2q, thus we have w = 2q and m = r.
Hence, each tuple requires b = w−m+4 = 2q− r+4 bits. In the concurrent tree, each

tuple (internal and root) requires 2z+ 1 bits. Therefore, the Cleary tree uses at least

(2z+1)− (2q− r+4) = 2z−2q+ r−3 bits less per state.

If the size of the internal table is chosen to just fit all tuple entries, then z = q.
Therefore, the Cleary tree uses r−3 bits less per state.

Since the root table may be larger than the internal table, the Cleary tree can halve

the memory compared to the concurrent tree. For example, taking z = q = 31 bits and

r = 35 bits, we have an optimal case of 2z+1 = 63 bits per state, whereas the previous

lemma tells us that the Cleary tree requires 31 bits (r−3 = 32 bits less in this case).

Corollary 4.1. In the optimal case, the Cleary tree approaches z bits per state, assum-
ing a relatively large number of vectors is stored n� k2 � 1.

Proof. In optimal case, the n root entries dominate the tree: l � n (see Corollary 3.3).

For this reason, the root table can be greater than the internal table: r > z, while q = z.
As the root table is a Cleary table, a larger number of buckets increases the hash quotient,

in turn reducing the remainder and the bucket size. Using Lemma 4.2, we see that indeed

z bits per root entry can be surpassed.

Even with ideal sharing, the internal table still can contain up to l = k2−2k entries

of size 2z (see Corollary 3.3). Averaging their total size over all n states in the Cleary

tree, a few bits per state account for the memory use of the internal table.

In total, the Cleary tree thus uses around z bits per state.

Corollary 4.2. Using only around z bits per state, the Cleary tree can still store more
than 2z states.
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Proof. Follows from the proof of Corollary 4.1.

Corollary 4.2 is perhaps a surprising and counter-intuitive result. The following

section confirms it.

The worst case compression ratios can be derived as well. But obviously, in case

tree compression is far from optimal, there is little merit in using the Cleary tree instead

of the concurrent tree. Table 4.1 compares the compressed sizes just derived, to those

with the concurrent tree from Section 3.3. The choice of the size of z depends on the

implementation as discussed below.

Table 4.1: The compressed state sizes, maximum number of states storable and imple-

mentation choice for z for the Concurrent tree and the Cleary tree.

Best case Max. states z in impl.

Concurrent tree > 2z+1 bits < 2z z = 31

Cleary tree ≈ 2z− r+4 bits (q = z) 2r > 2z z = 32

Implementation considerations. As explained in Section 3.4.4, hardware con-

straints dictate the implementation to a large degree. We implemented the internal table
using z= 32 bits (64bit buckets in the internal table), and variable size l = 2q≤ 2z = 232.

References to the internal are bit-packed to 2q≤ 64 bits, before storing them as root tu-

ples in the Cleary root table. We further fixed the Cleary table’s bucket size to b = 32
bits, making r variable under the constraint b = 32≥ w−m+4 = 2q− r+4. Thus the
user should ensure that r ≥ 2q−28.

4.5 An Information-Theoretic Lower Bound

This section establishes an information-theoretic lower bound for the storage space re-

quired per state. The fact that the tree yields good compression comes from the fact that

they contain structure and have combinatorial values as we saw in Section 3.4. States

generated by a, e.g. a model checker, have these properties.

The Cleary tree stores far larger vectors than the Cleary table. The universe of

vectors in the tree is UCT = {0,1}uk of which only a small subset S ⊆UCT can ever be

stored in memory: n = |S|�� |UCT |. The universe of the Cleary tableUCL, on the other

hand, is only slightly bigger than the stored subset S′ ⊂UCL, otherwise the compression

ratio obtained is not interesting: w−m−3
w with m≈ |S′| and w =UCL.
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We can still consider the information entropy contained in the larger states, but

a different approach is needed than in Section 4.1. Information theory abstracts away

from the computational nature of a program by considering sender and receiver as black

boxes that communicate data (signals) via a channel. The goal for the sender is to

encode the data is small as possible, such that the receiver is still able to decode it

back to the original. The encoded size depends on the amount of entropy in the data.

In the most basic case, no statistical information is known about the data: each of X
possible messages has an equal probability of taking one of its values and the entropy

H is maximal: H(X) = log2(|X |)bit. The entropy thus corresponds to the number of

bits needed for the encoded message.

If more is known about the statistical nature of the information coming from the

sender, the entropy is lower and encoding can be applied to reduce the number of

bits needed per piece of information (bytes in the previous example). A simple ex-

ample is when we take into account the character frequency of the English language

for encoding sentences. Assuming that certain characters are much more common, a

code of fewer bits can be used for them, while longer codes can be reserved for other

characters. To calculate the entropy in this example, we need the probability of occur-

rence p(x) for each character x ∈ X in the English language. We can deduce this from

analyzing a dictionary, or better a large corpus of texts. The entropy than becomes:

H(X) = ∑x∈X−p(x) log2(p(x))
We apply the same principle now to structured data. As example, we use state vec-

tors as processed in a model checker. In the previous section, we were reminded that

states consist of k slots of each u bits. In the previous chapter, we also saw that states

are generated by a next-state function, and locality ensures similar successors, e.g.:

NEXT-STATE(〈3,5,5,4,1,3〉) = {〈3,5,9,4,1,3〉,〈3,5,5,4,2,3〉, . . .}
As the predecessor is thus always known in the model checker’s reachability proce-

dure, we can abstract away from this one-to-many relation and view the states arriving

at the tree as a k-periodic stream of u-bit slots, as illustrated in Figure 4.4. The stream

〈3,5,5,4,1,3〉 〈3,5,9,4,1,3〉 〈3,5,9,3,2,3〉NEXT-STATE NEXT-STATE NEXT-STATE

1
K

K−1
K

Figure 4.4: The states generated with the NEXT-STATE function seen as a stream. As-

sumed probabilities are shown for the bold slot values.
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can also be described as: 〈v0
0, . . .v

1
k−1〉,〈v1

0, . . .v
1
k−1〉, . . .〈vn−1

0 , . . .vn−1
k−1〉. Given that the

predecessor state is always known, it makes sense to describe the probability of differ-

ent slot values of a state with respect to its predecessor: To encode a slot vi
j with i≥ 0

and 0 ≤ j < k− 1, the encoder can then always look at the predecessors’ value of the

corresponding slot vi−1
j to derive the absolute probabilities over all values.

Sincewe are interested in establishing a lower bound wemay safely under-approximate

the number of slot values changed with respect to a state’s predecessor. It make sense

to assume that only 1 slot changes, since with lower values, the same state is generated

to often (and we do not require space to store equal states in the tree). Thus we take the

following relative probabilities:

p(vi
j �= vi−1

j ) =
1
k

p(vi
j = vi−1

j ) =
k−1

k

With y = 2u, notice that the there are y−1 possible values for which a state slot can

differ from its predecessor: p(x) = 1
k(y−1) for x �= vi−1

j . This results in the following

definition of entropy per slot:

Hslot(si
j) =−

k−1
k

log2(
k−1

k
)+

y−1

∑
i=1
− 1

k(y−1)
log2(

1
k(y−1)

)

For reasonably large y and k, i.e. 1� k� y, we arrive at:

Hslot ≈
1
k
(log2(y)+ log2(k)+ k log(

k
k−1

))

From this we can derive the entropy of a state:

Hstate = k×Hslot = log2(y)+ log2(k)+ k log(
k

k−1
)

Given that u is often an integer in model checking software, it is common to have

u = z, hence the entropy per state can approach log2(y) = log2(2
z) = z for 1 � k �

y� n. This provides some intuition behind Corollary 4.2, as the information entropy

is indeed is not dependent on the number of states n. From Corollary 4.1, we conclude

that the Cleary tree can approach the information-theoretic optimum.
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4.6 Experiments

In the current section, we show an empirical evaluation of the parallel Cleary table (PCT),

i.e. Cleary+DRL, by comparing its absolute performance and scalability with that of

BLP+DRL, LHT and RBL. In our experiments, several parameters have been fixed as

follows: m= 28, b= 16 for PCT, while for the non-compacting tables b= 64, and finally

α = 0.9. These parameters reflect best the goals we had in mind for this work, since

all tables can store pointers larger than 32 bits. Furthermore, the load factor and bucket

size for PCT is higher than the values discussed in Section 4.3.2, creating a healthy

bias against this algorithm. Additionally, we investigated the influence of different load

factors on all tables.

We used the following benchmark setup. All tables were implemented in the C

language using pthreads.4.3 For RBL, we determined the optimal size of the regions

by finding the size that yielded the lowest parallel runtime, as the scalability depends

largely on this parameter [DJK13]. For table of 228 buckets, this turned out to be 213.

The benchmarks were run on Linux servers with 4 amd Opteron(tm) 8356 CPUs (16

cores total) and 64GB memory. The maximum key size w that all tables can store in

our configuration is 40: for PCT we have w = b+m− 4 = 16+ 28− 4 = 40, and for

BLP, LHT and RBL we have w = 64− 2 = 62 (2 for the lock and occ bit). Therefore,

we fed the tables with 40 bit keys, generated with a pseudo random number generator.

Table 4.6 gives the runtimes of all hash tables for different read/write ratios and

load factor of 90%. Beside the runtimes with 1, 2, 4, 8, and 16 cores (TN for N ∈
{1,2,4,8,16}), we included the runtimes of the sequential versions of the algorithms

Tseq, i.e., the algorithm run without any locks and atomic instructions. From this, we

Table 4.2: Runtimes of BLP, RBL, LHT and PCT with r/w ratios 0:1, 3:1 and 9:1.

Alg. LHT RBL BLP PCT

r/w ratio 0:1 3:1 9:1 0:1 3:1 9:1 0:1 3:1 9:1 0:1 3:1 9:1

Tseq 77.5 242.4 569.2 76.7 239.9 563.2 71.8 279.1 676.0 54.5 368.9 1050.

T1 81.6 255.2 599.2 145.9 565.4 1404. 97.5 302.0 726.3 77.3 565.9 1543.

T2 51.6 157.6 371.0 85.0 327.6 813.4 60.8 188.8 443.9 44.4 317.7 863.9

T4 26.5 77.9 184.0 46.2 170.2 424.9 31.3 94.0 219.1 23.4 159.7 431.9

T8 13.9 39.6 92.9 24.0 89.4 219.2 16.5 47.8 110.3 11.5 79.7 216.0

T16 7.7 21.1 48.8 13.5 48.6 120.5 9.4 25.5 57.2 6.0 41.6 112.9

4.3 Available at: http://fmt.cs.utwente.nl/tools/ltsmin/memics-2011
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Figure 4.5: Speedups of BLP, RBL, LHT and PCT with r/w ratios 0:1, 3:1 and 9:1.

can deduce the overhead from the parallelization. Comparing the runs with a r/w ratio

of 0:1, we see that the sequential variants have more or less the same runtime (PCT

is slightly faster, due to its compacter table). Only the lockless algorithms show little

overhead when we compare Tseq to T1, while DRL shows that the posix mutexes slow

the algorithm down by a factor of two. The same trend is reflected in the values for TN
with N > 1.

If we now focus our attention to the higher r/w ratios, we see that reads are much

more expensive for PCT. This was expected, since non-exclusive reads in DRL are not

allowed for PCT as explained in the previous section. To investigate the influence of

the r/w ratio, we plotted the absolute speedups (SN = Tseq/TN) of the presented runs in
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Figure 4.6: 16-core runtimes of BLP, RBL, LHT and PCT.

Figure 4.5. The lightweight locking mechanism of DRL delivers good scalability for

PCT and BLP, almost matching those of LHT. While PCT speedups are insensitive to

the r/w ratio, since the algorithm always performs the same locking steps for both read

and write operations, BLP shows much better speedups for higher r/w ratios. Finally,

we see that RBL is no competition to the lockless algorithms.

To investigate the effects of the load factor, we measured the 16-core runtimes of all

algorithms for different load factors. To obtain different load factors we modified the

number of keys inserted and not the hash table size, therefore we plotted the normalized

runtimes T norm in Figure 4.6 (T norm = T/α , where α = n/|T | is the load factor and n
the number of keys inserted). Due to the open-addressing nature of the hash tables

presented here, the asymptotic behavior is expected for α close to 100% (the probe

sequences grow larger as the table fills up). However, this effect is more pronounced for

PCT, again because of the read-write exclusion, and for RBL, because more locks have

to be taken once the probe distance grows.

The concurrent Cleary tree implementation is available in the multi-core LTSmin

backend [LPW11a]. Benchmarks and compression ratios can be found in Chapter 11.
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4.7 Discussion and Conclusions

We have introduced DRL: a lockless mechanism to parallelize BLP and Cleary compact

hash tables efficiently. We have shown, analytically and empirically, that these Parallel

Cleary Tables (PCT) scale well up to load factors of at least 80%. This is acceptable,

since the compression ratio, obtained by compact hashing, can be far below this value.

With experiments, we also compared both parallel ordered hash tables (PCT and

BLP) with a state-of-art lockless hash table (LHT) and a region-based locking table

that uses operating system locks (RBL). We found that PCT and BLP can compete with

LHT in terms of scalability, but adds a factor 2 of performance overhead. On the other

hand, RBL scales worse than the other lockless tables. We finally showed that PCT

comes with higher costs for find operations and higher load factors. However, this also

holds for the sequential algorithm because it has to probe to the end of the cluster as the

analysis showed and as is reflected by the good speedups that PCT still exhibits.

While we concentrated in this work on a parallel find-or-put algorithm, we think

that other operations, like individual find, p and delete operation, can be implemented

with minor modifications.

In future work, we would like to answer the following questions: Could DRL be im-

plemented with locking only one side of the cluster and the home location? Could PCT

be implemented with non-exclusive reads? The former could further improve the scal-

ability of DRL, while the latter could transfer the performance figures of parallel BLP

to those of PCT. We would also like to eliminate the superfluous occupied bit [DM09,

page 5] and see if DRL could be used on similar hashing schemes such as Robin Hood

hashing [CLM85].

We further showed the use of the Cleary table in tree compression. The resulting

compression comes close to the information-theoretic optimum as our model for a lower

bound on state entropy shows.
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Introduction

With the realization of scalable multi-core reachability and compatible state compres-

sion techniques in Part II, many safety properties can be checked efficiently (see Sec-

tion 1.4). To support all safety properties and also liveness properties, we need parallel

algorithms for checking temporal logics, e.g. LTL. Several parallel LTL model check-

ing algorithms already exist (Section 1.5.1), but these are all based on distributed algo-

rithmswhich loose the optimal time complexity and on-the-fly property of the automata-

theoretic approach to model checking. In the current part, we pursue a linear-time al-

gorithm for LTL checking, an important open problem according to many researchers:

“It is as yet an open problem how a liveness verification algorithm could

be generalized to the use of more than two processing cores while retaining

a low search complexity.”

[HB07]

“One of themost important open problems of parallel LTLmodel check-

ing is to design an on-the-fly scalable parallel algorithm with linear time

complexity.”

[BBR10b]

In the current part, we exploit the strengths of the parallel reachability from Part II

– its flexibility with respect to search orders and its on-the-fly capability – to create a

new parallel version of the traditional linear-time ndfs algorithm for finding accepting
cycles in a graph. The accepting cycles constitute (all) counterexamples in the automata-

theoretic approach to model checking, thus solving the problem of LTL checking. A

parallel ndfs algorithm is proposed in Chapter 5 and gradually improved in Chapter 6

and Chapter 7. Our experimental results show that the resulting cndfs algorithm (Chap-

ter 7), delivers scalable parallel LTL checking with improved on-the-fly behavior (see

Section 7.4.4, but also Section 6.4) and which is linear in the size of the graph.
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Because the sequential ndfs relies on the dfs order [Kru05], of which the paral-

lelization is theoretically infeasible as explained in Section 5.1, we rely instead on eager

independent, or embarrassingly, parallel computation, with late global propagation of

results. In the worst case, this approach could result in a speedup of 1, with all proces-

sors performing the same computations (the work complexity becomes P×N, with P
the number of processors and N the size of the state space, while the time complexity

remains equal to that of a sequential algorithm). Experiments however show that for

practical problems this does not occur (Section 6.3.4 and Section 7.4).

cndfs supports the excellent state compression by means of tree compression as in-

troduced in Chapter 3. The goal posed by Subquestion 2 (Section 1.5.3) of supporting

other reduction techniques, such as partial-order reduction, is however not completely

met, as we do not present a way to implement the necessary ignoring proviso [EP10].

While we have indications that cndfs can support it at least to some extend, we opted

instead to focus on an important subset of LTL: livelocks. Chapter 8 presents a new par-

allel dfsfifo algorithm [LF13] for solving livelocks, which delivers optimal scalability

and at the same time excellent partial-order reductions.

The table below describes the contributions that the current part makes towards

solving the goals of the thesis (c.f. Table 1.1 in Section 1.5.3). Scalable and on-the-fly

multi-core LTL checking of explicit-state formalisms is now added to the table. State

compression is still supported by exchanging the hash table with the lockless tree table

of Chapter 3. Only partial-order reduction is not supported because of the difficulty

of implementing the ignoring proviso in parallel. The parallel dfsfifo algorithm solves

this problem for livelocks.
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Many of the experiments presented in the current part are done on 16-core machines

(except in Chapter 7 and Chapter 8). In Chapter 11, we present strong evidence that

these methods also scale on 48-core machines, and in absolute terms when compared

to spin, a leading model checker implementation.
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Multi-Core Nested Depth-First Search

Alfons Laarman, Rom Langerak, Jaco van de Pol, Michael Weber,

Anton Wijs

Abstract
The LTL Model Checking problem is reducible to finding accepting cycles in

a graph. The Nested Depth-First Search (Ndfs) algorithm detects accepting cy-

cles efficiently: on-the-fly, with linear-time complexity and negligible memory

overhead. The only downside of the algorithm is that it relies on an inherently-

sequential, depth-first search. It has not been parallelized beyond running the inde-

pendent nested search in a separate thread (dual core).

In the current chapter, we introduce, for the first time, a multi-core Ndfs algo-

rithm that can scale beyond two threads, while maintaining exactly the same worst-

case time complexity. We prove this algorithm correct, and present experimental

results obtained with an implementation in the LTSmin toolset on the entire Beem

benchmark database. We measured considerable speedups compared to the current

state of the art in parallel cycle detection algorithms.

About this chapter:
The current chapter is based on the paper “Multi-core Nested Depth-First Search”,
which was published at ATVA 2011 [Laa+11].

The original text from [Laa+11] has been improved by correcting an error in the multi-
core nested depth-first search algorithm with extensions (Algorithm 5.4). In the orig-
inal version it was not taken into account that the coloring introduced by the all-red
extension could cause the same early backtracking problem that is discussed in Sec-
tion 5.4.2. This problem was remedied by an additional wait statement. We thank
Wan Fokkink and Stefan Vijzelaar for pointing out this problem. We further extended
the discussion on the automata-theoretic approach to model checking, to better sup-
port the natural reading order of the current thesis. The general introduction was
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removed. Finally, we also updated experiments with new benchmarks, as we discov-
ered a bug in the implementation that affected the speedups.

Note that Chapter 7 presents a superior algorithm.

5.1 Introduction

Typically, in order to fully verify whether a system specification adheres to a given

temporal property, a model checking algorithm needs to store the entire so-called state
space in memory. A state space is a directed graph which explicitly describes all poten-

tial behavior of the system specification (see Chapter 1). Recent observations [BBR10b]

support that research should be focused on achieving faster model checking (MC); cur-

rently, memory capacity of the latest hardware allows the analysis of very large state

spaces, but the required time to do so is often impractically long.

One advancedMC task is the verification of full Linear Temporal Logic (LTL) prop-

erties [BK08]. LTL can be subdivided into two classes of properties: safety properties,

e.g. “nothing bad ever happens”, and liveness properties, e.g. “eventually something

good happens”. While safety properties can be handled with so-called reachability,
which entails visiting all states in the state space reachable from the initial state, live-

ness properties require a more complicated analysis.

An algorithm introduced byCourcoubetis et al. [Cou+92], often referred to asNested
Depth-First Search (Ndfs), is particularly useful for checking liveness properties. It has

a linear time-complexity and runs on-the-fly, i.e. without the need to generate the whole

state space, and requires only two bits per state [SE05].

While reachability has been parallelized efficiently in Part II, a linear-time multi-

core LTLMC algorithm was still unknown. Ndfs cannot trivially be adapted to a multi-

core setting, since it relies on depth-first search (dfs), which is often considered inher-

ently sequential. In particular, the problem of establishing lexicographic dfs postorder

(with fixed successor ordering) in a digraph has been shown to be P-complete [Rei85].

As it is generally believed that P �= NC, where NC or “Nick’s Class” [Coo79; Pip81]

represents efficiently parallelizable problems, it is also likely that P-complete problems

are not parallelizable.

But even though many other parallel LTL MC algorithms have been introduced

over the course of years, none of them exhibits a worst-case linear-time complexity (or

even O(n× log(n)), with n the number of states) and the complete on-the-fly prop-

erty [BBR10b; BBR09a; Bar+10].

Recent developments, which we group here under the term swarm verification (SV)

[HJG08; HJG11], have introduced new dfs-based techniques [Dwy+07; SG03] to per-

formMC tasks in parallel. Although mainly targeted at distributed-memory settings, in
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which multiple machines are employed, SV can trivially be used on a multi-core, i.e.,

shared-memory, machine as well. However, when doing so, the fact that the memory is

shared is obviously not exploited.

In the current chapter, we first propose SV-based multi-core Ndfs with shared state

storage. While this speeds up cycle detection significantly, in the absence of accepting

cycles each core still has to traverse the complete state space. Next, we introduce a fine-

grained and basic sharing mechanism between threads. Even though parallel search

may endanger the correctness of a multi-core Ndfs by breaking the postorder, we prove

that our algorithm is in fact correct. We subsequently add several known Ndfs opti-

mizations [SE05] to the new parallel setting. Finally, we demonstrate its usefulness in

practice by comparing many experimental results obtained with an implementation of

our algorithm with results obtained with existing parallel LTL MC algorithms.

Contributions. We present the first multi-core on-the-fly LTL model checking algo-

rithm which is linear-time in the size of the input graph, and has a potential speedup

greater than two. We provide a rigorous proof of its correctness and many benchmarks.

Though the new algorithm does not scale perfectly for all inputs yet, we still believe to

have come one step closer to solving the open question, put forth by Holzmann et al. and

Barnat et al. [HB07; BBR09a], of finding a time-optimal, scalable, parallel algorithm

for accepting cycle detection.

Next, in Section 5.2, the preliminaries behind LTLMC are explained. Related work

is discussed in Section 5.3. We propose a multi-core Ndfs algorithm, prove its cor-

rectness and provide optimizations in Section 5.4. Section 5.5 contains a discussion on

the experiments we conducted. Finally, in Section 5.6, considerations are addressed,

conclusions are drawn and possibilities for future work are given.

5.2 Background (LTL Model Checking)

LTLMC entails checking that a system under verificationP satisfies an LTL property φ ,

which may be a liveness property that reasons over infinite traces of the system (“even-

tually something good happens”). We first explain the automata-theoretic approach to

this problem, and then discuss an existing algorithm to solve it.

5.2.1 The Automata-Theoretic Approach to LTLModel Check-
ing

LTLmodel checking is usually performed following the automata-based approach orig-

inating from [VW86] that proceeds in several steps. In the current chapter, we focus
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only on the last step of the process that can be reduced to a graph problem: given a

graph representing the synchronized product of the Büchi property automaton and the

state space of the system, find a cycle containing an accepting state. Any such iden-

tified cycle determines an infinite execution of the system violating the LTL formula.

In the current chapter, we will only reason about Büchi automata that result from the

synchronous product of a Büchi property automaton and a system graph describing the

dynamic behavior of the modeled system.

Definition 5.1. A Büchi automaton (BA) is a quadruple B = (S,sI ,next-state(),F),
with S a finite set of states, sI the initial state, post : S → 2S the successor function,
and F ⊆ S a set of accepting states.

The use of the next-state() function, instead of a transition relation, reflects the

fact that this cross product can be generated on-the-fly [VW86].

Notations. Let B = (S,sI ,next-state(),F) be a BA. If for s, t ∈ S , we have t ∈
next-state(s), then we can also write s→ t. The reflexive transitive closure of→ is

denoted by →∗, and the transitive closure by →+. We call s →∗ t and s →+ t paths
through B, i.e. sequences of states connected by the successor function. Sometimes we

interpret a path π as a set of states, and write s ∈ π , meaning that s ∈ S is included in

the sequence of states of π . A run through B is an infinite path starting at sI . Finally, we

call a run π accepting if and only if for infinitely many s ∈ π , we have s ∈ F . Checking

the existence of such a run is called the emptiness problem.

To check an LTL property φ on P , it suffices to solve the emptiness problem for

the product of the state graph GP and the Büchi automaton B¬φ (e.g. [VW86]). Here,

GP is an explicit representation of all possible behavior of P in the form of a graph,

and B¬φ is the Büchi automaton accepting all infinite paths described by the negation

of φ . A counterexample for φ in B = GP ×B¬φ exists iff there exists some a ∈ F such

that sI →∗ a and a→+ a (i.e. there is an accepting run), where the latter is called an

“accepting cycle”. Hence, solving the emptiness problem corresponds with determining

the reachability of an accepting cycle.

The fact that the cross product can be generated on-the-fly avoids that we have to

generate (and store) GP in its entirety, before calculating the cross product. Moreover,

the LTLMC procedure – we discuss one in the next section – can terminate early when a

counterexample is found, often ensuring that only a small part of B needs to be explored

and stored.

136



5

5.2 Background (LTL Model Checking)

5.2.2 Sequential LTL Model Checking Algorithms

The first linear-time algorithm to detect accepting runs was proposed by Courcoubetis

et al. [Cou+92] and, today, is often referred to as nested depth-first search (Ndfs). In

the current chapter, we propose a multi-core Ndfs (Mc-ndfs).

Following [Boš02], we first discuss a non-linear algorithm (Algorithm 5.1) to il-

lustrate the principle. It performs an outer search, called dfs_blue, to find accepting

states (see Line 16). This blue search marks states on the stack cyan (Line 12) and vis-

ited states blue (Line 19), hence its name (note that initially, all states are white). The

nested search (dfs_nested) then searches for a cycle over the accepting state, which we

refer to as the seed of the search. It may search the entire state space as it always starts

with an empty visited set R (Line 17). When it encounters a cyan state (Line 7), it found

an accepting cycle, as the cyan stack of the blue search leads to the seed [HPY96]. Con-

versely, it is easy to see that if a cycle exists, it is reported, as an independent nested

search is launched for all accepting states.

The obvious problem with Algorithm 5.1 is that it is quadratic in the size of the

state space: For each (accepting) state, the entire state space may be visited in the

nested search. Realizing that dfs_blue sorts the accepting states in dfs postorder, i.e.
dfs_nestedis called in the backtrack of dfs_blue, we may see that this is entirely not nec-

essary. For if a nested search from a seed a encounters a state s from a previous nested

search from a′, and a lies on a cycle with s, then so must a′ lie on a cycle with s. If this is
not the case, it would contradict the fact that a′ was processed before a in the postorder

(see [Tar72] for a detailed explanation). Since the search from a′ did not encounter a

Algorithm 5.1 A nested accepting cycle detection algorithm (non-linear)

1 proc ncd(sI)
2 dfs_blue(sI)
3 report no cycle
4 proc dfs_nested(s)
5 R := R∪{s}
6 for all t in NEXT-STATE(s) do
7 if t.color=cyan
8 report cycle & exit
9 else if t /∈ R

10 dfs_nested(t)

11 proc dfs_blue(s)
12 s.color := cyan
13 for all t in NEXT-STATE(s) do
14 if t.color=white
15 dfs_blue(t)
16 if s ∈ F
17 R := /0
18 dfs_nested(s)
19 s.color := blue
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Algorithm 5.2 An adapted New Ndfs algorithm

1 proc nndfs(sI)
2 dfs_blue(sI)
3 report no cycle
4 proc dfs_red(s)
5 for all t in NEXT-STATE(s) do
6 if t.color=cyan
7 report cycle & exit
8 else if t.color=blue
9 t.color := red

10 dfs_red(t)

11 proc dfs_blue(s)
12 s.color := cyan
13 for all t in NEXT-STATE(s) do
14 if t.color=white
15 dfs_blue(t)
16 if s ∈ F
17 dfs_red(s)
18 s.color := red
19 else
20 s.color := blue

cycle through s (if it did, it would have terminated, contradicting a subsequent search

from a). In the nested search for a, the algorithm therefore does not have to explore s,
or any other s′ visited in a previous nested search from some seed a′ (processed earlier

in the postorder). In other words, R does not have to be emptied at Line 17.

The basic Ndfs algorithm is thus equivalent to Algorithm 5.1 without Line 17.5.1

Over the years, extensions to Ndfs have been proposed in, e.g., [HPY96; SE05; GS09].

We build on the New Ndfs (Nndfs) algorithm from [SE05] (Algorithm 5.2). It im-

proves Ndfs by combining the blue, cyan and red color in a single 2-bit variable (here:

color). The algorithm now delays the red coloring of the seed until after the red search

(Line 18), so it stays cyan during the search for cycle detection at Line 6. Algorithm 5.2

does not include the early cycle detection in dfs_blue from the original Nndfs, for this

extension does not contribute to the understanding of Mc-ndfs. In Section 5.4.4, we

retrofit Mc-ndfs with this and other extensions.

Nndfs thus runs in linear time, since each reachable state is at most visited twice,

once in the blue dfs and once in a red dfs. An intuitive proof of correctness is given in

[Cou+92]. In [GS09], a standalone correctness proof is given for Nndfswith early cycle

detection and an extension called allred (both are explained in Section 5.3). Section B.1

gives a detailed correctness proof for a roughly equivalent algorithm, which may serve

as an introduction to the proof of Mc-ndfs later in the current chapter.

5.1Although Algorithm 5.1 already contains the extension to detect cycles via the cyan stack [HPY96].
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5.3 Related Work

Two prominent classes of linear-time algorithms to detect accepting runs are formed

by the Ndfs-based and the strongly connected component (SCC)-based algorithms (ex-

plained below). The performance of both classes of algorithms is known to be similar,

up to some exceptions: Algorithms in the Ndfs class use less memory, while algorithms

in the Scc class tend to find counterexamples faster [GV04; SE05; GS09]. Since we

propose an Ndfs-based algorithm, the emphasis here is on related work in the Ndfs

class. Finally, we also discuss breadth-first search (Bfs)-based algorithms.

SCC-based algorithms. Strongly connected components (SCCs) are the subgraphs

of a graph in which each state can reach all other states [Tar72], informally speaking.

An non-trivial SCC contains at least one transition. Non-trivial SCCs with accepting

state therefore contain an accepting cycle. Hence, several researchers suggested the use

of Tarjan’s algorithm [Tar72] to find accepting cycles. To make the algorithm more

on-the-fly several extensions have been introduced [Cou99; GV04].

Ndfs. As mentioned in Section 5.2, Ndfs was introduced in [Cou+92]. There, a cor-

rectness proof is given based on the fact that red Dfss are initiated for accepting states

based on the postorder enforced by the blue dfs. Holzmann et al. [HPY96] observe that

it suffices in a red dfs to check the reachability of a state currently on the stack of the

blue dfs, i.e. a state colored cyan in Nndfs, since such a state can reach the accepting

state which initiated the current red dfs, closing an accepting cycle.

Schwoon and Esparza [SE05] combine all of the above extensions and observe that

some combinations of colors can never occur. This allows them to introduce a two-bit
color encoding, also encoding a cyan color for states on the stack of the blue dfs. Finally,

Gaiser and Schwoon [GS09] introduce the allred extension and give a standalone proof

for their Nndfs. The allred extension incorporates an additional check in the blue dfs:

if all successors of a state s are red, then s can be colored red as well. This avoids some

calls of dfs_red. We will show later that for our Mc-ndfs, this extension is very useful.

Parallel Ndfs. Holzmann and Bošnački [HB07] proposed a dual-core Ndfs (Ndfs-

2) based on the observation that a transition initiating a red dfs is an “irreversible state

transition”, i.e. it splits the state graph. A new thread is launched to handle the red dfs.

Since both Dfss are still inherently sequential, the number of threads cannot exceed two,

and both potentially have to search the entire state graph. Courcoubetis et al. already

mentioned that the two Dfss could be interleaved.
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Prominent model checking approaches primarily aimed at settings with distributed

memory, e.g., when using a cluster or grid, are swarm verification (SV) [HJG08; HJG11]

and Parallel Randomized dfs [Dwy+07; SG03] (Prdfs). These are so-called embar-
rassingly parallel [Fos95] techniques, since the individual workers operate fully inde-

pendently, i.e. without communication with the other workers. From here on, when

mentioning SV, we refer to existing SV and Prdfs techniques. Note that the search di-

rection of a dfs is determined by the order in which states are selected for exploration

from next-state(s) (for any s ∈ S), e.g. on Line 13 of Algorithm 5.2. In SV, basi-

cally each worker performs a dfs with a unique ordering of the successor states. In this

way, workers explore different parts of the reachable state graph first. This method has

proven to be very successful for bug-hunting. In the absence of bugs, though, the graph

will be explored N times, with N the number of workers, since the workers are unaware

of each other’s results. Although not explicitly mentioned before, SV can be performed

in a multi-core setting as well with each worker performing the Ndfs algorithm.

Bfs-based methods. Several other LTL MC methods exists which are not dfs-

based. Instead these algorithms rely on Bfs techniques [BBC03a] and are therefore

easier to parallelize, even in a distributed setting. On the down side, the linear-time com-

plexity and on-the-fly property is often lost. All of these algorithms have been designed

for the distributed setting and some were ported to multi-core machines [BBR10b;

Bar+10] (namely: Owcty, Map and Otf_Owcty).

Negative Cycle (Negc) [Bri+01] uses a similar fixed-point approach, but instead

propagates a negative index from accepting states. The accepting cycle detection prob-

lem is thus reduced to finding negative cycles. The algorithm is not on-the-fly and the

performance has been found to be inferior to other solutions [Bri+04].

Every accepting cycle contains a back-level transition, which jumps back from a

state that is l levels from the initial state, to a state that is≤ l levels from the initial state.

Back-Level Edge (Bledge) [BBC03b] uses this information to find the cycles with a

fixed point computation. It is not on-the-fly and its performance has been found to be

meager in practice [Bri+04]. An on-the-fly version of the algorithm has however been

developed in [BBC05b].

One-Way-Catch-Them-Young (Owcty) [ČP03], repeatedly removes states that can-

not be part of an accepting cycle. It is sufficient to only remove states without (not yet

removed) successors and states that have no accepting predecessors. To compute these,

the algorithm propagates the number of preceding accepting states. The algorithm is

also not on-the-fly at all.

Maximal Accepting Predecessor (Map) [BBR10b] performsmultiple forward reach-

ability computations to propagate the preceding accepting state with a maximal index
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Table 5.1: Sequential and multi-core LTL MC algorithms and their worst-case time

complexity, scalability, and on-the-fly property. (T is the set of reachable transitions,

|S| the number of states, |F| the number of accepting states, and h the height of the Scc

quotient graph [ČP03].)

Algorithm Source Time complexity Scalability On-the-fly

Ndfs [Cou+92] O(|S|+ |T |) 1 core Yes

Couvreur-Tarjan [Cou99] O(|S|+ |T |) 1 core Yes

GV-Tarjan [GV04] O(|S|+ |T |) 1 core Yes

Ndfs-2 [HB07] O(|S|+ |T |) 2 cores Yes

Negc [Bri+01] O(|S| · |T |) N cores No

Map [BBR10b] O(|F|2 · |T |) N cores Heuristic

Bledge [BBC03b] O(|T | · (|S|+ |T |)) N cores No

Otf_Bledge [BBC05b] O(|T | · (|S|+ |T |)) N cores Heuristic

Owcty [ČP03] O(h · |T |) N cores No

Otf_Owcty [BBR09a] O(h · (|S|+ |T |)) N cores Heuristic

Mc-ndfs Chapters 5, 6 75.2 O(N · (|S|+ |T |)) N cores Yes

for every state. This computation reaches a fixed point after a while, at which moment

the maximal accepting predecessor of at least one accepting state on a cycle, has to be

itself. Map preserves the on-the-fly property to the extent that it is heuristic: cycles can

be detected early (when an accepting state finds itself as maximal predecessor), but this

is not guaranteed.

By combining Map with Owcty, the same property is transferred to the new On-
The-Fly One-Way-Catch-Them-Young (Otf_Owcty) algorithm. For the important class

of weak LTL, the algorithm has been shown to be time-optimal [BBR09a], therefore it

is the current state of the art in multi-core LTL MC.

Table 5.1 gives a brief overview of all sequential and parallel LTL MC algorithms

discussed so far with their worst-case complexities and on-the-fly behavior. In the sub-

sequent sections (and later chapters), we develop amulti-core version ofNdfs (Mc-ndfs)

that scales to more than 2 cores and inherits the on-the-fly property of the original algo-

rithm. The scheduling approach of this algorithm is optimistic, based on on SV, but with

communication, thus the complexity ranges from 1 time the complexity of the original

Ndfs, to N times its complexity.
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5.4 Multi-Core Ndfs

5.4.1 A Basic Multi-Core Swarmed Ndfs

As already mentioned, SV is compatible with a shared-memory setting. However, the

independence of workers in SV may result in duplicated states on the different ma-

chines, hence, when mapped naively to a multi-core machine, the shared memory is not

exploited. Therefore, we store all states in a shared lockless hash table or tree table,

which have been shown to scale well for this purpose in Part II.

A basic SV Ndfs algorithm executes an instance of Algorithm 5.2 for each worker i
with thread-local color variables. The two bits needed per state per worker are small

compared to the state itself and for a dozen or so workers, memory usage is still lower

than for Scc-based algorithms [SE05]. Local permutations of the next-state function

direct workers to different regions of the state graph, resulting in fast bug-finding typical

for SV. With next-stateb
i (next-stater

i ), we denote the permutation of successors used

in the blue (red) dfs by worker i. For inputs without accepting cycles this solution does

not scale. In the next section, we attack this problem.

5.4.2 Multi-Core Ndfs with Global Coloring

A naive sharing of colors between multi-core workers is prone to influence the inde-

pendent postorders on which the correctness of the Ndfs algorithm relies [Cou+92]. In

the current section, we present a color-sharing approach which preserves correctness.

The next section provides a correctness proof of this Mc-ndfs algorithm.

The basic idea behind Mc-ndfs in Algorithm 5.3 is to share information in the

backtrack of the red Dfss (dfs_red). A new (local) color pink is introduced to signify

states on the stack of a red dfs, analogous to cyan for a blue dfs. When a red dfs

backtracks, the states are globally colored red. These red states are now ignored by

both all blue and red Dfss, thus pruning the search spaces for all workers i.
Additionally, we count the number ofworkers that initiate dfs_red in s.count (Line 10)

and wait with backtracking until this counter is 0 (Line 21,22). This enforces that if mul-

tiple workers call dfs_red from the same accepting state, they will finish simultaneously.

Figure 5.1 illustrates the necessity of this synchronization by a simple counterexample

that could occur in absence of this synchronization.

A worker 1 could explore a,b,u,v,w, backtrack from w, explore t and backtrack

all the way to the accepting state b where it will call a dfs_red at Line 11. Then this

dfs_red(b,1) could explore u,v,w and halt for a while. Now, a worker 2 could start

5.2And Evangelista et al. (see Section 5.6).
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Algorithm 5.3 A Multi-core Ndfs algorithm, coloring globally red in the backtrack

1 proc mc_ndfs(s,N)
2 dfs_blue(s,1)‖..‖dfs_blue(s,N)
3 report no cycle
4 proc dfs_blue(s,i)
5 s.color[i] := cyan
6 for all t in NEXT-STATEb

i (s) do
7 if t.color[i]=white∧¬t.red
8 dfs_blue(t,i)
9 if s ∈ F

10 s.count := s.count + 1
11 dfs_red(s,i)
12 s.color[i] := blue

13 proc dfs_red(s,i)
14 s.pink[i] := true
15 for all t in NEXT-STATEr

i (s) do
16 if t.color[i]=cyan
17 report cycle & exit all
18 if ¬t.pink[i]∧¬t.red
19 dfs_red(t,i)
20 if s ∈ F
21 s.count := s.count − 1
22 await s.count = 0
23 s.red := true
24 s.pink[i] := false

dfs_red(b,2) in a similar fashion. Next, it could explore w,v,u, backtrack, mark u red

and halt for a while. Then worker 1 continues to mark w red.

Note that the two accepting cycles contain red states, but bothworkers can still detect

a cycle by continuing to explore v and t (b is cyan in the local coloring of both workers).

However, a third worker can endanger this potential, while the first two workers halt for

a while. After worker 3 searches a and subsequently t and b in a blue dfs, it will start a

dfs_red at b, but because its successors are now red, worker 3 will backtrack and mark b
red. Note that exactly this step is prevented by adding the await statement. Continuing

with dfs_red(a,3), states t and a will also become red, obstructing workers 1 and 2 from

finding a cycle.

a b

t

vu w

Figure 5.1: Counterexample to correctness of Mc-ndfs without await statement.
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No worker finds a cycle in this way, which thus constitutes a counterexample for

correctness. However, because worker 3 is forced to wait for the completion of the

red Dfss of workers 1 and 2 before it can backtrack from state b in dfs_red(b,3), this
counterexample is invalid for Mc-ndfs.

Finally, we note that Mc-ndfs in Algorithm 5.3 is presented in a form that eases

analysis of correctness: without superfluous details. For example, the pink variable of

states is separate from the color variable, which stores only the colors white, blue and

cyan. The two-bit color encoding of [SE05] is thus dropped for a while. In the fol-

lowing section, we prove correctness of Mc-ndfs, after which we amend the algorithm

in Section 5.4.4 with the extensions discussed in Section 5.3. The allred extension is

shown to improve sharing between workers significantly.

5.4.3 Correctness Proof

In the current section, we provide a correctness proof for Mc-ndfs. For brevity and

understandability this proof is kept brief: Some lemmas are given at upfront, and the

reasoning in the proofs is kept coarse. A detailed proof can be found in Appendix A.1.

We assume that each line of the code above is executed atomically. The global state

of the algorithm is the coloring of the input graph B and the program counter of each

worker.

We use the following notations: The sets Whitei, Cyani, Bluei and Pinki contain all

the states colored white, cyan, blue, and pink by worker i, and Red contains all the red

states. E.g., if s.color[i] = blue, we write s ∈ Bluei. It follows from the assignments

of the respective colors to the color variable that Whitei, Cyani and Bluei are disjoint.

Also, we denote the state of one worker as dfs_red(s, i)@X , meaning that worker i is
executing l.X in dfs_red for a state s. Finally, we use the modal operator s ∈ �X to

express that ∀t ∈ next-state(s) : t ∈ X .

s

a1 t

r

a2

Figure 5.2: An obstructed accepting cycle.
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Correctness of Mc-ndfs hinges on the fact that it will never miss all reachable ac-

cepting cycles, i.e. it will always find one if one exists. Recall from Section 5.2 that

Ndfs ensures that all reachable states are visited only once by both dfs_blue and dfs_red.
Mc-ndfs ensures that each reachable state is visited at least once by both some dfs_blue
and dfs_red, therefore for a reachable a ∈ F , there is at least one dfs_red(a, i)@11 for

some i, that initiates the recursion of the dfs_red.
This recursion continues at Line 19, where it tries to find a t ∈ Cyani at Line 16

that would close the cycle. Now, if the cycle a →+ a exists, worker i will either find

a t ∈ Cyani, or is obstructed because it encounters a t ∈ Red at Line 18. Figure 5.2

illustrates that workers can obstruct each other from finding cycles. For example, it

is possible that a worker 1 initiates a dfs_red for a1, marking r red. Then, a worker 2,

with a different next-stateb
i , could start a dfs_red for a2 and be obstructed from finding

cycle {a2,r, t,s}.
We first state invariants that express basic relations between the colors in Mc-ndfs.

These invariants are proven in the full proof which is presented in Appendix A.1. Then,

after Lemma 5.1, we prove the crucial insight (Theorem 5.1), the algoritm’s termination

(Theorem 5.2) and soundness and completeness (Theorem 5.3), i.e. when a counterex-

ample is reported, an accepting cycle indeed exists, and when an accepting cycle exists

in the graph, the algorithm will report a counterexample.

L1. ∀i : Bluei∪Pinki ⊆�(Bluei∪Cyani∪Red) (see Lemma A.6 and A.12)

L2. Red ⊆�(Red∪⋃
i(Pinki \Cyani)) (see Lemma A.10)

L3. ∀i,a ∈ F : a ∈ Bluei =⇒ a ∈ Red (see Lemma A.13)

L4. ∀i,a ∈ F : a ∈ (Pinki \Red) =⇒ a ∈ Cyani (see Lemma A.15)

L5. ∀i : Pinki ⊆ (Bluei∪Cyani) (see Lemma A.11)

Lemma 5.1. The following invariant holds for Mc-ndfs: ∀s ∈ Red,a ∈ F \Red : s→∗

a =⇒ (∃i, p ∈ Pinki,c ∈ Cyani : s→+ p ¬Red−→ +c→∗ a)

Proof. We show that the property follows from the previous invariants L1–4. Assume

s→∗ a for some s ∈ Red and a ∈ F with a �∈ Red. Let s′ ∈ Red be the last red state on

the path s→∗ a. Then, since s′ �= a, it has a successor t �∈ Red in this path. By L2 we

obtain t ∈ Pinki for some worker i, so let p := t.
Note that t �= a, otherwise by L4 t ∈ Cyani and by L2 t �∈ Cyani. So we find another

successor t ′ such that s→∗ s′ → t → t ′ →∗ a. Assume towards a contradiction that no

state on the path t ′ →∗ a is in Cyani; recall that t ′ →∗ a contains no Red states either.

Then by L1, all states on t ′ →∗ a are in Bluei. But then also a ∈ Bluei and by L3,

a ∈ Red, a contradiction. So there exists a c ∈ Cyani with s→∗ p→+ c→∗ a.
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a

s

t

p

c

a′
Pinki∧
Cyani∧
¬Red

Pinki

Red

Pink j

Pink j∧
Cyan j∧
¬Red

Cyan j

∗

+

¬Red,+ ∗
∗

∗

Figure 5.3: Snapshot of the cycle in the last “obstructed cycle search”. Edges with ∗,+
indicate paths of length ≥ 0 and > 0. Dotted arrows denote node colors and ¬Red,+ a

path without red.

Theorem 5.1. Mc-ndfs cannot miss all accepting cycles.

Proof. Assume an Mc-ndfs run would miss all accepting cycles. Since there are

only finitely many cycles, we can investigate the last “obstructed cycle” in this run,

i.e., the last time that a dfs_red (which originated from some accepting state a on a

cycle) encounters Red. That is, we are in dfs_red(s, i)@18 but we see t ∈ Red, although
s→ t →∗ a.

Note that a �∈ Red: Just before dfs_red(a, i)@11, a.count was increased by Line 10.

Therefore, no other worker can make a red, because they are all forced to wait at

Line 22.5.3

Hence we can apply Lemma 5.1, to obtain a path p ¬Red−→ +c for some p ∈ Pink j and

c∈Cyan j. It follows that there is an a′ ∈ F with c→∗ a′ →∗ p (property of dfs stacks).

Figure 5.3 provides an overview of the shape of the subgraph that we just discussed with

the deduced colorings.

But nowwe have constructed a cycle for worker j which has not yet been obstructed.

This contradicts the fact that wewere considering the last obstructed cycle. We conclude

that there is no last obstructed cycle, hence there exists no run that misses all cycles.

This proves partial correctness of Mc-ndfs. In order to prove that an accepting

cycle will eventually be reported, the algorithm is required to terminate.

5.3 A race condition can occur here, because worker i could increase a.count right after some worker j
passed the check at Line 22 in dfs_red(a, j). Next, worker i would start its dfs_red(a, i), and find that

a ∈�(Red). So i will also make a red and return from dfs_red. It does not matter whether i or j makes a
red first. Therefore, we can safely ignore such race conditions.
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Theorem 5.2. Mc-ndfs always terminates with some report at Line 3 or Line 17.

Proof. Assuming dfs_red terminates, we can conclude termination of dfs_blue from

the fact that for each worker i the set Bluei∪Cyani grows monotonically (blue is never

removed). Eventually, all the states are in the set and the blue search ends. Termi-

nation of the await statement at Line 22 state follows from the basic observation that

every worker i can have at most one counter increment on some accepting state, which

is decremented at Line 21 before waiting. Hence, when worker i is waiting, there can

be no other worker waiting for i. Finally, all red dfss terminate because also the set

Red∪Pinki grows monotonically.

Theorem 5.3. Mc-ndfs reports cycle if there exists a reachable accepting cycle in the
input graph B and it reports no cycle otherwise.

Proof. By Theorem 5.2, the algorithm terminates with some report. If a cycle is re-

ported at Line 17 by worker i, we find an s ∈ Pinki and t ∈ Cyani with s→ t. In that

case there is a state a ∈ F on the stack such that t →∗ a→∗ s→ t, so there is indeed an

accepting cycle.

Otherwise, if no cycle is reported at Line 3, all workers have terminated without

reporting a cycle. By Theorem 5.1 there is no accepting cycle in the graph.

5.4.4 Extensions

Wecan improveMc-ndfs further. Algorithm 5.4 presentsMc-nndfs, which isMc-ndfs

with the extensions discussed in Section 5.3. First, we opted to extend Mc-ndfs with

allred [GS09] (Line 16 and Line 24–28). Since the parallel workload of the Mc-ndfs

algorithm depends entirely on the proportion of the state graph that can be marked red

(see Section 5.5.2), allred can improve the scalability. Second, early cycle detection in

dfs_blue (Line 19–21) is needed to compete with Scc-based algorithms. Finally, the

introduction of the two-bit color-encoding from [SE05] for each worker will eliminate

the extra bit per worker used for the pink color.

Sketch of correctness. The allred extension in dfs_blue introduces a new red coloring

of a state s at Line 28, affecting the proof of Lemma 5.1. But, since s ∈ �(Red), the
induction hypothesis can be applied for the successor t of s. Furthermore, the proof

of Theorem 5.1 also depends on the seed a not becoming red, i.e. a �∈ Red, while

other workers are still performing a dfs_red for it. The allred coloring introduces a new

opportunity where this might happen. Therefore, allred coloring at Line 27 should be

delayed until a.count = 0, just like at Line 13.
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Algorithm 5.4 Mc-ndfs with extensions (Mc-nndfs)

1 proc mc_ndfs(s,N)
2 dfs_blue(s,1)‖..‖dfs_blue(s,N)
3 report no cycle

4 proc dfs_red(s,i)
5 s.color[i] := pink
6 for all t in NEXT-STATEr

i (s) do
7 if t.color[i]=cyan
8 report cycle & exit all
9 if t.color[i] �=pink∧¬t.red

10 dfs_red(t,i)
11 if s ∈ F
12 s.count := s.count − 1
13 await s.count=0
14 s.red := true

15 proc dfs_blue(s,i)
16 allred := true
17 s.color[i] := cyan
18 for all t in NEXT-STATEb

i (s) do
19 if t.color[i]=cyan ∧
20 (s ∈ F ∨ t ∈ F)
21 report cycle & exit all
22 if t.color[i]=white∧¬t.red
23 dfs_blue(t,i)
24 if ¬t.red
25 allred := false
26 if allred
27 await s.count = 0
28 s.red := true
29 else if s ∈ F
30 s.count := s.count + 1
31 dfs_red(s,i)
32 s.color[i] := blue

Due to the early cycle detection at Line 19–21, some accepting cycles can be de-

tected already in the blue search: At Line 20, via the properties of the blue dfs stack,

we have: sI →∗ t →∗ s→ t with t ∈ F ∨ s ∈ F .

The two-bit color encoding overwrites the value of the s.color[i] at Line 5. However,

L5 shows that only Cyani and Bluei are affected (not Whitei). The removal of s from

Bluei does not affect dfs_red, since it is insensitive toBluei. The removal of s fromCyani
seems more problematic, since cycle detection on Line 7 depends on it. However, we

also know that the only case where s is removed from Cyani, is in the initial dfs_red
call from Line 11 (recursive dfs_red calls are never made on Cyani states, since a cycle

would be detected at Line 16 and Line 19 would not have been reached). Hence, s ∈F .

It turns out that if there exists a path π ≡ s→∗ s with (π \ s)∩Cyani = /0, this accepting
cycle would have been detected by early cycle detection in dfs_blue (sI →∗ s→∗ s′ → s
with s ∈ F). Hence, we do not need any provisions to fix the removal of s from Cyani.

This fact was overlooked by Schwoon et al.[SE05; GS09], leading them to complicate

their Nndfs algorithm (Algorithm 5.2) with delayed red coloring of accepting states.
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5.5 Experiments

We implementedNndfs, multi-core SVNndfs andMc-nndfs in themulti-core backend

of the LTSmin model checking tool suite [LPW11a]. This enabled us to use the same

input models (without translation) and the same language frontend (compiler). We also

implemented randomized next-statei functions to direct threads to different regions of

the state space, as discussed in Section 5.4.1.

We performed experiments on an AMD Opteron 8356 16-core (4×4 cores) server

with 64 GB RAM, running a patched Linux 2.6.32 kernel. All tools were compiled us-

ing gcc 4.4.3 in 64-bit mode with high compiler optimizations (-O3). For comparison

purposes, we used all 453 models with properties of the Beem database [Pel07]. To

mitigate random effects in the benchmarks, runtimes are always averaged over 6 bench-

mark runs. We compared Mc-nndfs against multi-core SV Nndfs to answer the ques-

tion whether a more integrated multi-core approach can win against an embarrassingly
parallel algorithm. Furthermore, we compared with the best existing parallel LTL MC

algorithm Otf_Owcty, as implemented in DiVinE 2.5.1 [Bar+10].

Due to the on-the-fly nature of LTL algorithms, we distinguish models containing

accepting cycles from models that do not contain them. On the former set, algorithms

that build the state space on-the-fly and terminate early when a counterexample can be

found, are expected to perform very well.

5.5.1 Models with Accepting Cycles

We demonstrate the merits of multi-core SV Nndfs by comparing the runtimes with the

sequential Nndfs. As expected, SV speeds up the detection of accepting cycles (crosses

in Figure 5.4) significantly compared to sequential Nndfs runs. We do not expect to see

perfect speedups (16× on 16 cores) across all benchmarks, since the search is undirected

and some threads traverse parts of the state space which do not contribute to finding a

cycle. However, for some models, multi-core SV Nndfs does exhibit perfect speedups,

or even superlinear speedups. Due to randomization, multiple workers are more likely

to find counter examples[Dwy+07; SG03].

Both multi-core SV Nndfs and Mc-nndfs find accepting cycles roughly within the

same time (Figure 5.5), there is only a small edge for Mc-nndfs (most crosses are in

the upper half of the figure), due to work sharing effects. Apparently, the global red

coloring does not cause much “obstruction” (see Section 5.4.3).

We isolated those runs of Mc-nndfs on models with cycles, that have a runtime

longer than 0.1 sec, because only those yield meaningful scalability figures. Figure 5.6

on the next page shows that these models scale very well (the figure is cut off after a

149



Multi-Core Nested Depth-First Search

5
Figure 5.4: Log-log scatter plot of multi-

core SV Nndfs/ sequential Nndfs run-

times.

Figure 5.5: Log-log scatter plot of

Mc-nndfs/ multi-core SV Nndfs run-

times.

Figure 5.6: Model counts of speedups with Mc-nndfs (base case: sequential Nndfs)

speedup of 20, but it extends well beyond speedups of 100). Out of 50 models with

cycles (and runtimes ≥ 0.1 sec), ≈ 50 % exhibit at least six-fold speedups and a few

exhibit superlinear speedups (factor > 16).
Finally, a comparison with Otf_Owcty unsurprisingly shows that Mc-nndfs finds

counterexamples much faster (crosses in Figure 5.7), due to its depth-first on-the-fly

nature, while Otf_Owcty is only heuristically on-the-fly.
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5.5.2 Models without Accepting Cycles

For models without accepting cycles, on-the-fly algorithms lose their edge over other

algorithms, as the state space has to be traversed fully. We demonstrate this with our

multi-core SV Nndfs benchmark runs, which degrade timewise to sequential Nndfs

(dots in Figure 5.4). We note that multi-core SVNndfs causes little overhead compared

to the sequential Nndfs version, hence it would be safe to run multi-core SV if the

presence of a counterexample is uncertain.

However, when comparing multi-core SV Nndfs against Mc-nndfs (Figure 5.5),

we observe significant speedups, in some cases more than ten-fold (dotted line) on

16 cores. Again, we isolated the runs of Mc-nndfs on models without cycles that run

more than 0.1 sec (Figure 5.6). We observed at least ten-fold speedups for 5 models

out of 91 such models (the y axis of the figure is cut off). In the Beem database, we

verified the nature of the 20 models that exhibit speedup greater than factor two. These

include: leader election and other communication protocols, hardware models, con-
trollers, cache coherence protocols and mutual exclusion algorithms (see Table 5.2).

Figure 5.7 reveals that Mc-nndfs can mostly keep up with the performance of

Figure 5.7: Log-log scatter plot of Mc-nndfs/ Otf_Owcty runtimes. Above the diag-

onal Mc-nndfs wins, below Otf_Owcty wins.
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Table 5.2: Mc-nndfs runs with speedup ≥ 2 for models without cycles

Model Speedup (16)

leader_filters.6.prop2 13,17

leader_election.5.prop2 12,63

leader_election.4.prop2 12,26

leader_election.6.prop2 12,16

leader_filters.7.prop2 12,05

leader_election.3.prop2 10,87

leader_filters.5.prop2 9,92

leader_filters.3.prop2 6,74

leader_election.2.prop2 5,90

protocols.4.prop2 5,51

leader_election.1.prop2 5,24

leader_filters.4.prop2 5,00

protocols.5.prop4 4,84

leader_filters.2.prop2 4,69

protocols.4.prop4 3,82

lifts.6.prop2 2,68

lifts.3.prop2 2,33

rether.3.prop5 2,14

szymanski.2.prop4 2,08

rether.5.prop5 2,08

rether.7.prop5 2,01

Otf_Owcty. However, on some models without accepting cycles DiVinE is faster by a

factor of 10 on 16 cores. Which algorithm performs best in these cases likely depends

on model characteristics, which we have yet to investigate.

However, we did investigate the lack ofMc-nndfs scalability for somemodels with-

out cycles in Figure 5.6. All these cases lack states colored red by dfs_red. However,

this does not hold the other way around: many models with few of these red states still

exhibit speedups. This can be attributed to the red coloring by the allred extension

(which we counted separately). In fact, for all models without cycles, the proportion of

states colored red by dfs_red turned out to be negligible, while allred accounts for the

vast majority of the red colorings.

We found that the number of red colorings is strongly dependent on the exploration
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s

t u

a

Figure 5.8: Exploration order can influence rN

order (next-statei). Figure 5.8 illustrates that this is indeed possible. If a search ad-

vances first from s through t, then t (and s) cannot be colored red. However, if a is

visited first, then u becomes red, hence later also t and s. It would be interesting to find

a heuristic that maximizes red colorings.

We also observed that the speedup SN is dependent on the fraction of red states rN ,

as can be expected from the fact that rN is the fraction of work that can be parallelized:

SN ≈ Tseq
Tseq×(1−rN)+Tseq×rN/N = 1

1−(1−1/N)rN
, where Tseq× (1− rN) is duplicated work.

This shows us that the algorithm barely waits for a long time at Line 22, which is also

confirmed by direct measurements.

5.6 Conclusions

In the current chapter, we introduced amulti-core Ndfs algorithm, starting from amulti-

core SV version, and proved its correctness. Its time complexity is linear in the size

of the input graph, and it acts on-the-fly, addressing an open question put forward by

Holzmann et al. and Barnat et al. [HB07; BBR09a]. However, in the worst case, each

worker might still traverse the whole graph. We showed empirically that the algorithm

scales well on many inputs. The on-the-fly property of Mc-nndfs, combined with the

speedups on cycle-free models, makes Mc-nndfs highly competitive to Otf_Owcty.

The experiments were needed because Mc-nndfs is a heuristic algorithm: in the

worst case (no accepting states, hence no red states) no work is shared between workers

and the performance reduces to the SV version. However, in these cases no other known

linear-time parallel algorithm obtains any speedup (including dual-core Ndfs [HB07]).

The space complexity of Mc-nndfs remains decent: per state 2×N local color bits,

log2(N) bits for the count variable, and one global red color bit, with N workers. The

count variable could be omitted, at the expense of inspecting the pink flags of all other

workers. However, this would lead to a significant contention. The overhead of log2(N)
bits per state is insignificant next to the space required by the local colors.
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Final remark. We have strong indications that Mc-nndfs can be improved.

First, the previous section showed that a heuristic for exploration order might be

of great benefit for the scalability. In Chapter 7, we investigate the influence of the

exploration order better using different models.

Second, at the time of the publication of the work presented in the current chapter,

a paper by Evangelista et al. was published describing a similar algorithm. This rival

algorithm uses however a very different approach, and therefore in Chapter 6 we show

how these algorithms can be combined. Chapter 7 presents again an improvement on

this combined algorithm that is better integrated and reduces memory usage (cndfs).
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Variations on Multi-Core Nested Depth-First Search

Alfons Laarman, Jaco van de Pol

Abstract
Recently, two new parallel algorithms for on-the-fly model checking of LTL

properties were presented at the same conference: Automated Technology for Ver-
ification and Analysis, 2011. Both approaches extend Swarmed Ndfs, which runs

several sequential Ndfs instances in parallel. While parallel random search already

speeds up detection of bugs, the workers must share some global information to

speedup full verification of correct models. The two algorithms differ considerably

in the global information shared between workers, and how they synchronize.

Here, we provide a thorough experimental comparison between the two algo-

rithms on a multi-core machine. Both algorithms were implemented in the same

framework of the model checker LTSmin, using similar optimizations, and have

been subjected to the full Beem model database.

Because both algorithms have complementary advantages, we constructed an

algorithm that combines both ideas. This combination clearly has an improved

speedup. We also compare with the alternative parallel algorithm for accepting

cycle detection Otf_Owcty. Finally, we study a simple statistical model for input

models that do contain accepting cycles. The goal is to distinguish the speedup due

to parallel random search from the speedup attributable to work sharing.

About this chapter: The current chapter is based on the paper “Variations on Multi-
Core Nested Depth-First Search”, which was published at PDMC 2011 [LP11].

The original text was not modified, except for the fix of the multi-core NDFS algorithm
that was also applied in the previous chapter, as explained in the ‘about’ section of
that chapter. Also, the general introduction was removed.

Note that Chapter 7 presents a superior algorithm.
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6.1 Introduction

During the last decades, processor speeds have been greatly increased, making model

checkers much more powerful. Where early papers on model checking discussed the

verification of models with a few thousand states, currently we can easily handle billions

of states (see Part II). Recently, however, these advances are grinding to a halt, because

of physical limits inside the CPU cores. Instead, the number of logical computing cores

increases. Nonetheless, model checking can still benefit from the progress made by

CPU manufacturers, if the algorithms are parallelized.

A complication is that dfs (and thus Ndfs) is inherently sequential [Rei85]. Bar-

nat et al. have therefore introduced breadth-first search (Bfs) based algorithms, such

as Maximal-Accepting-Predecessors (Map [Bri+04]) and One-Way-Catch-Them-Young
(Owcty [ČP03]). These algorithms deliver excellent speedups, but sacrifice linear-time

complexity. However, their latest combinedOtf_Owcty algorithm [BBR09a], is linear-

time for the class of weak LTL properties and also useful for bug hunting. It is therefore

the current state of the art in multi-core LTL model checking.

Recently, also two parallel Ndfs-based algorithmswere introduced [EPY11; Laa+11]

(the latter is described in Chapter 5). Both take as starting point a randomized parallel

search by a swarm of Ndfs workers. While this is useful for bug-hunting, it does not

really help in the absence of bugs, in which case all workers traverse the full state space.

To improve speedup, both algorithms share some global information between workers,

in order to reduce the amount of work even in the absence of accepting cycles. ENdfs

from Evangelista et al. [EPY11] shares a lot of information, but this may break the re-

quired dfs order. A sequential repair procedure steps in when a potentially dangerous

situation is detected. On the other hand, LNdfs from Chapter 5 shares less global infor-

mation and adds extra synchronization. This avoids dangerous situations and the need

for a repair strategy. However, this leads to a reduced amount of work sharing in some

cases.

Contributions. The main goal of the current chapter is to experimentally compare

both multi- core Ndfs algorithms. In order to enable a fair comparison, we extended

ENdfswith the same optimizations as used in LNdfs. We implemented both algorithms

in the same framework of LTSmin. Finally, we subjected both implementations to the

full Beem benchmark database [Pel07], running them on shared memory machines with

up to 16 cores. Note that actual runtimes had not yet been reported for ENdfs, although

workload distributions were shown in [EPY11]. Also, for LNdfs, we have rerun the

experiments from Chapter 5.

Another contribution is a simple combination of the ENdfs and LNdfs algorithms,
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improving the speedup compared to both of them. We also compare all mentioned al-

gorithms with the Otf_Owcty algorithm, both for bug hunting and for full verification.

Finally, based on a simple statistical model [HJN08], we investigate how much of the

speedup in the parallel Ndfs algorithms should be contributed to the effects of parallel

random search and what is the contribution of the more clever work sharing schemes.

The algorithms are explained in Section 6.2. The experimental results are presented

in Section 6.3. Section 6.4 contains the discussion on parallel random search. Our

conclusions are summarized in Section 6.5.

6.2 Parallel Algorithms to Detect Accepting Cycles

Model checking properties from Linear Temporal Logic (LTL) entails verifying that all

runs of a given system satisfy some safety or liveness property. In the automata-theoretic

approach [VW86; BK08], a Büchi automaton is constructed that accepts all infinite

words corresponding to those runs of the original system that violate the property. So the

problem is reduced to the emptiness check of ω-regular languages. A Büchi automaton

accepts a word if it visits some accepting state infinitely often. For finite automata, this

implies that there is a cycle through some accepting state.

Definition 6.1. A Büchi automaton is a quadruple B = (S,sI ,next-state,F), where S
is the finite set of states, sI ∈ S is the initial state, next-state : S → 2S the successor
function, and F ⊆ S the set of accepting states.

Note, that the use of the next-state function reflects the way in which the Büchi

automaton is computed on-the-fly from the input model. When appropriate, we refer to

the complete automaton as graph or state space.

The purpose of all algorithms in the current chapter is to detect an accepting cycle

in this graph. For states s, t ∈ S , we write s→ t if t ∈ next-state(s), and→+ (→∗),
for its (reflexive) transitive closure. An accepting cycle is some state a ∈ F , which is

reachable from the initial state (sI →∗ a) and lies on a non-trivial cycle (a→+ a).

6.2.1 Nested Depth-First Search

The first linear-time algorithm to detect accepting cycles was proposed by Courcoubetis

et al. [Cou+92] and is referred to as Nested Depth-First Search (Ndfs). Ndfs also enjoys

the on-the-fly property. This means that the algorithm can terminate as soon as a cycle is

detected, without the need to visit (or even construct) the whole graph. This makes Ndfs

very suitable for bug hunting, besides its use for full verification. Various extensions
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Algorithm 6.1 The (sequential) New Ndfs algorithm adapted from [SE05]

1 proc nndfs(s)
2 dfs_blue(s)
3 report no cycle

4 proc dfs_red(s)
5 s.color := red
6 for all t in NEXT-STATE(s) do
7 if t.color = cyan
8 report cycle & exit
9 else if t.color = blue

10 dfs_red(t)

11 proc dfs_blue(s)
12 s.color := cyan
13 for all t in NEXT-STATE(s) do
14 if t.color = cyan and (s ∈ F ∨ t ∈ F)
15 report cycle & exit
16 if t.color = white
17 dfs_blue(t)
18 if s ∈ F
19 dfs_red(s)
20 else
21 s.color := blue

and optimizations to Ndfs have been proposed [HPY96; SE05; GS09]. Algorithm 6.1

most closely resembles New Ndfs [SE05].
In Algorithm 6.1, nndfs (sI) initiates a blue dfs from the initial state, so called since

explored states are colored blue (we assume that initially all states are white). A newly

visited state is first colored cyan (“it is on the DFS-stack”), and during backtracking

after exploration, it is colored full blue. However, if at Line 18 the blue dfs backtracks

over an accepting state s ∈ F , then dfs_red(s) is called, which is the nested red dfs to

determine whether there exists a cycle containing s. As soon as a cyan state is found

on Line 7, an accepting cycle is reported [HPY96; SE05]. In the blue dfs, early cycle
detection is possible, at Line 14,15. Due to early cycle detection, it does not matter that

the cyan color of s is overwritten by red at Line 5 (see Section 5.4.4).

Ndfs runs in linear time, since each reachable state is visited at most twice, once in

the blue dfs and once in a red dfs. The correctness of Ndfs essentially depends on the

fact that the red Dfss are initiated on accepting states in the postorder imposed by the

blue dfs. So the red search will never hit another accepting state that is not already red.

6.2.2 Embarrassing Parallelization: Swarmed NDFS

The inherently DFS nature of the blue search makes Ndfs hard to parallelize, since

computing the postorder is a P-complete problem [Rei85]. One response has been to

develop entirely different algorithms based on Breadth-First Search, cf. Sec. 6.2.6.

Another approach would be to simply run N isolated instances of Ndfs (Algo-

rithm 6.1) in parallel, in the hope that this swarm of Ndfs workers will detect accepting
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cycles earlier [HJG08; Laa+11]. Local permutations of the next-state function direct

the workers to different regions of the state space, so their search becomes independent.

With next-stateb
i (next-stater

i ) we denote the permutation of successors used in the

blue (red) dfs by worker i. Section 6.4 analyses the expected and actual improvements

due to parallel randomized search.

Although Swarmed Ndfs is expected to be profitable for bug hunting, it does not

show a speedup in the absence of accepting cycles, in which case all workers have to

go through the complete state space. Indeed, the worst-case complexity of all parallel

Ndfs variations in the current chapter isO(| → | · |N|), i.e. linear both in the size of the

Büchi automaton and in the number of workers.

To improve average speedup, some more synchronization between the workers is

needed. Note that a naive global sharing of colors between multiple workers would be

incorrect, because it would destroy the postorder properties on which Ndfs relies. Next,

we discuss two recent proposals for sharing information between the Ndfs workers.

6.2.3 LNDFS: Sharing the Red Color Globally

The basic idea behind LNdfs in Algorithm 6.2 is to share information in the backtrack

of the red Dfss. A new pink color is introduced at Line 5 to signify states on the stack

of a red dfs, analogous to cyan for a blue dfs. The cyan, blue and pink colors are all

local to worker i, but the red color is shared globally. On backtracking from the red

dfs, states are colored red at Line 14. These red states are ignored by all blue and red
Dfss (Line 21,9), thus pruning the search space for all workers i. To improve pruning

during the blue search, the amount of red states is even increased by the all-red extension

from [GS09] (Line 16 and Line 23-27).

To ensure correctness, it is necessary to synchronize the red coloring of accepting

states (see Line 13). Otherwise, the algorithm is incorrect for more than two workers

(see Section 5.4.2, which provides a correctness proof for N > 0 workers). Scalability

of the LNdfs algorithm could be hampered by the need for synchronization, but waiting

is only needed when multiple workers start a red search from the same accepting state;

this is rare in practice. Another reason for limited scalability is that work is only pruned

when states can be marked red. Despite the all-red extension, for input graphs with no

(or very few) accepting states, all workers still have to traverse the whole graph.

6.2.4 ENDFS: an Optimistic Approach with Repair Strategy

The basic idea of ENdfs in Algorithm 6.3 [EPY11] is to share both the blue and the

red colors globally; only the cyan and pink colors are local per worker. We deviate

from the description in [EPY11] by adding a cyan stack and early cycle detection as
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optimizations, because this enables a fair comparison with LNdfs. Consequently, we

also renamed the local colors.

Sharing the blue color can lead to problems, as the postorder is not preserved by the

algorithm. ENdfs optimistically proceeds, but if it encounters accepting states that are

not yet red during the red search, they are marked dangerous at Line 11. Eventually,

dangerous states are double-checked in a repair stage, by a separate sequential Ndfs

using worker-local colors only, at Line 29-30. Note that for technical reasons, states

are not colored red during backtracking, but just collected in the thread-local set Ri at

Line 6. Only after termination of the red dfs they are made red (provided they are not

dangerous) at Line 26-28.

Scalability of the ENdfs algorithm could be hampered by the repair stage, because

this proceeds sequentially. Also, marking states red occurs relatively late, potentially

leading to more duplicate work within the red dfs.

Algorithm 6.2 The LNdfs algorithm, pruning blue and red dfs by a global red color,

adapted from Chapter 5.

1 proc lndfs(s,N)
2 dfs_blue(s,1)‖..‖dfs_blue(s,N)
3 report no cycle

4 proc dfs_red(s, i)
5 s.color[i] := pink
6 for all t in NEXT-STATEr

i (s) do
7 if t.color[i] = cyan
8 report cycle & exit all
9 if t.color[i] �= pink∧¬t.red

10 dfs_red(t, i)
11 if s ∈ F
12 s.count := s.count−1
13 await s.count = 0
14 s.red := true

15 proc dfs_blue(s, i)
16 allred := true
17 s.color[i] := cyan
18 for all t in NEXT-STATEb

i (s) do
19 if t.color[i] = cyan and (s ∈ F ∨ t ∈ F)
20 report cycle & exit all
21 if t.color[i] = white∧¬t.red
22 dfs_blue(t, i)
23 if ¬t.red
24 allred := false
25 if allred
26 await s.count = 0
27 s.red := true
28 else if s ∈ F
29 s.count := s.count+1
30 dfs_red(s, i)
31 s.color[i] := blue
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6.2.5 A Combined Version: New MC-NDFS

We have recapitulated two very recent Mc-ndfs algorithms, which both seem to have

their merits and pitfalls. ENdfs, in the end, resorts to a sequential repair strategy, but it

avoids somework duplication due to the global blue color. LNdfs does not need a repair

strategy, but the blue dfs is only pruned when there are sufficiently many red states, and

the algorithm may have to wait for synchronization. A simple idea suggests itself here:

we could combine the two algorithms and try to reconcile their strong points. The idea

is simply to run the optimistic algorithm, i.e. Algorithm 6.3, but when dangerous states

are encountered at Line 30, we call the parallel algorithm LNdfs (rather than Ndfs).

We expect an improved speedup, because using ENdfs ensures good work sharing,

even in the absence of accepting states. And using LNdfs parallelizes the repair strat-

egy, avoiding the important sequential bottleneck of ENdfs. In the actual implementa-

tion, we also used a simple load balancing strategy: when a worker finishes ENdfs, it

starts helping other workers still in their LNdfs repair phase.

Algorithm 6.3 The optimistic ENdfs algorithm, marking dangerous states, adapted

from [EPY11].

1 proc endfs(s,N)
2 dfs_blue(s,1)‖..‖dfs_blue(s,N)
3 report no cycle

4 proc dfs_red(s, i)
5 s.pink[i] := true
6 Ri := Ri∪{s}
7 for all t in NEXT-STATEr

i (s) do
8 if t.cyan[i]
9 report cycle & exit all

10 if t ∈ F ∧¬t.red
11 t.dangerous := true
12 if ¬t.red∧¬t.pink[i]
13 dfs_red(s, i)

14 proc dfs_blue(s, i)
15 s.cyan[i] := true
16 for all t in NEXT-STATEb

i (s) do
17 if t.cyan[i] and (s ∈ F ∨ t ∈ F)
18 report cycle & exit all
19 if ¬t.cyan[i]∧¬t.blue
20 dfs_blue(t, i)
21 s.cyan[i] := false
22 s.blue := true
23 if s ∈ F
24 Ri := /0
25 dfs_red(s, i)
26 for all r ∈ Ri do
27 if ¬r.dangerous∨ s = r
28 r.red := true
29 if s.dangerous
30 nndfs(s, i)
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6.2.6 One-Way-Catch-Them-Young with Maximal Accepting
Predecessors

In the next section, we will compare the performance of the various Ndfs implemen-

tations in terms of their absolute timing and speedup behavior. We will also compare

them with the current state-of-the-art algorithm in parallel symbolic model checking,

Otf_Owcty [BBR09a] by Barnat et al., which is a member of the branch of Bfs-based

algorithms (other algorithms in this class are discussed in Section 5.3).

Basically, it extends the One-Way-Catch-Them-Young algorithm (Owcty [ČP03]),

with an initialization phase incorporated from the Maximal-Accepting-Predecessor al-

gorithm (Map [Bri+04]). In a nutshell, Map iteratively propagates unique node iden-

tifiers to successors. As soon as an accepting state receives its own identifier, a cycle

is detected. Owcty is based on topological sort and iteratively eliminates states that

cannot lie on an accepting cycle, because they have no predecessors.

These algorithms are generally based on Bfs, which is more easy to parallelize

than dfs. However, these algorithms sacrifice linear-time behavior and the on-the-fly

property. The resulting combination is linear-time for Büchi automata generated from

the class of weak LTL properties, and shows on-the-fly behavior for several cases.

6.3 Experiments

We implemented multi-core Swarmed Ndfs and Algorithm 6.2 and Algorithm 6.3 in

the multi-core backend of the LTSmin model checking tool suite [LPW11a; BPW10;

BPW09].6.1 We performed experiments on anAMDOpteron 8356 16-core (4×4 cores)

server with 64 GB RAM, running a patched Linux 2.6.32 kernel. All tools were com-

piled using gcc 4.4.3 in 64-bit mode with high compiler optimizations (-O3).
We measured performance characteristics for all 453 models with properties of the

Beem database [Pel07] and compared the runs with the best known parallel LTL model

checking algorithm Otf_Owcty as implemented in DiVinE 2.5 [Bar+10]. In fact, we

used the latest release available from the development repository on 23 March 2011,

which was close to the 2.5 version, except for a few relevant bug fixes.

Note that Otf_Owcty has been implemented in DiVinE, whereas all Ndfs-based

algorithms have been implemented in LTSmin. This should be taken into account when

comparing absolute runtimes. LTSmin implements a generic interface around the fast

implementation of the next-state() function of DiVinE, resulting in sequential run-

times that can be twice as slow. On the other hand, LTSmin internally uses shared hash

tables, which are shown to scale better, at least for reachability (see Chapter 2).

6.1Available on the LTSmin website: http://fmt.cs.utwente.nl/tools/ltsmin/.
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To account for the random nature of the algorithms, all experiments were executed

a total of 5 times. The data presented in the following subsections reflect the average

over those 5 experiments.

6.3.1 ENDFS Benchmarks

Evangelista et al. [EPY11] used workload distribution measurements to estimate the

scalability of ENdfs. Figure 6.2 reflects their estimated speedups. Figure 6.1 shows the

speedups that we obtained by measuring real runtimes of the algorithm.

Figure 6.1: Measured speedups ENdfs. Figure 6.2: Speedups ENdfs in [EPY11].

A comparison with the estimated speedups shows that the trend of the lines has been

accurately predicted in most cases. A case by case comparison, however, shows some

divergence between the exact numbers: models that scale well in “synthetic” bench-

marks of Figure 6.2 as, e.g., anderson.6.prop4, elevator2.3.prop4,
leader_election.6.prop2 and szymanski.4.prop4, do not scale well in

practice. We have not investigated the source of these differences, but apparently the

amount of dangerous states is quite sensitive to implementation parameters.

Figure 6.3 and Figure 6.4 compress the results from all models of the Beem database

in log-log scatter plots. In both figures, we show models without accepting cycles as

dots and models with these cycles as crosses. Comparing ENdfs to Ndfs in the first

figure, we can distinguish good speedups for the models with cycles, while the other

figure shows that ENdfs even improves the results of Swarmed Ndfs a little. In Sec-

tion 6.4, we investigate and compare these effects more thoroughly, using a statistical

reference model for random parallel search. As for the models without accepting cycles,

we see that most do scale with ENdfs, but hardly beyond a speedup of 10. Even though
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theoretically possible, we identified no cases where the repair strategy of ENdfs yields

speed downs (in the worst case, all workers can traverse the state space 4 times).

We also investigated what caused some inputs to scale poorly. Figure 6.5 shows

the percentage of the state space that is covered by the repair procedure. As expected, a

high percentage was measured for all models with poor scalability. Figure 6.6 shows the

cumulative additional work performed by all workers, by summing up the states visited

by all workers in the repair procedure and dividing by the total amount of states (|S|). It
is worrisome that the need for repair can increase faster than the number of cores. This

suggests that the ENdfs may not scale to many-core systems.

6.3.2 ENDFS versus LNDFS

Figure 6.7 shows the speedups of the LNdfs algorithm. In this set of models, few scale

well with this algorithm. The flat lines represent models with relatively few states reach-

able from accepting states. In these cases, the algorithm can only color few states red,

thus limiting work sharing between the workers. As shown in Chapter 5, the fraction

of red states is indeed directly related to the speedup that is obtained. The two mod-

els leader_filters.7.prop2 and leader_election.6.prop2 have state

spaces that are colored entirely red, and hence exhibit almost ideal linear speedups.

However, Figure 6.9 shows that only few models behave this ideally. Unfortunately,

in Chapter 5 we reported better speedups, which we have now tracked down to an im-

Figure 6.3: Ndfs vs ENdfs. Figure 6.4: Swarmed Ndfs vs ENdfs.
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Figure 6.5: % of state space in ENdfs repair. Figure 6.6: Cumulative extra repair work.

plementation error that led to too many red states.

When comparing ENdfs to LNdfs in Figure 6.10, wewitness a few ties (on the thick

line), a few winners with LNdfs and by far the most winners with ENdfs. We looked up

the models that draw a tie and found that all of them scale with both algorithms. These

are therefore not in need of improvements. Most interestingly, the models that scale well

with LNdfs correspond to those that do not scale with ENdfs. This indicates that both

algorithms are complementary. A fact that is indeed to be expected, because the same

accepting states that cause states to be colored red in LNdfs, are potentially marked

dangerous in ENdfs. This motivated their combination as described in Section 6.2.5.

Figure 6.7: Speedups LNdfs. Figure 6.8: Speedups NMc-ndfs.
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6.3.3 NMC-NDFS Benchmarks

In the current subsection, we investigate our ENdfs and LNdfs combination: NMc-ndfs.

Figure 6.8 shows that NMc-ndfs improves upon the speedups of ENdfs (see Figure 6.1),

and Figure 6.15 confirms that all models scale well with the combined algorithm.

For NMc-ndfs, again, we also calculated the cumulative additional work as a per-

centage of the state space in Figure 6.11. The state-space coverage by the repair proce-

Figure 6.11: Cumulative extra work due to

NMc-ndfs repair.

Figure 6.12: Speedups Owcty.
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dure is almost equal to that of ENdfs in Figure 6.5. We can then deduce that the repair

work is parallelized well by LNdfs, because the cumulative additional work is close to

the percentage of state space coverage. This can be explained by the fact that LNdfs is

always called on a (dangerous) accepting state in NMc-ndfs, which eventually leads to

a red coloring of the entire subgraph reachable from this accepting state. Under these

conditions LNdfs can be expected to scale well.

We also checked whether the new combination causes additional overhead, by com-

paring it directly with its predecessors in Figure 6.13 and Figure 6.14. The first figure

shows that no model runs faster with ENdfs than with NMc-ndfs, although in a few

examples LNdfs wins, as can be seen in the latter figure. This confirms that LNdfs and

ENdfs are complementary and their combination represents the best from both worlds.

Indeed, the combination ensures that for all inputs some speedup is obtained.

6.3.4 Parallel NDFS versus OWCTY-MAP

Figure 6.16 compares NMc-ndfs with Otf_Owcty. The comparison figures show that

the heuristic on-the-fly method of Otf_Owcty is no match for the truly on-the-fly par-

allel Ndfs algorithms. As for the models without accepting cycles, we can conclude

that currently NMc-ndfs provides a good match for Otf_Owcty, in particular for the

larger models. For the sake of completeness, we present here Figure 6.17, 6.18, com-

paring ENdfs/LNdfs and Otf_Owcty. Furthermore, Figure 6.12 shows the absolute

Figure 6.13: ENdfs vs NMc-ndfs. Figure 6.14: LNdfs vs NMc-ndfs.
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speedups of Otf_Owcty using the sequential Ndfs runtimes as the base case.

Figure 6.15: Ndfs vs NMc-ndfs. Figure 6.16: Otf_Owcty vs NMc-ndfs.

Figure 6.17: Otf_Owcty vs ENdfs. Figure 6.18: Otf_Owcty vs LNdfs.

6.4 Discussion on Parallel Random Search

As explained in Section 6.2, the multi-core Ndfs algorithms use a randomized next-

state( ) function to direct workers to different regions of the state space. In this section,

we want to explain the speedup for models with accepting cycles. In particular, we want
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to distinguish the effect of parallel random search, from the effect of the clever work

sharing algorithms.

Our starting point is a simple statistical model as found in [HJN08]. We view

Ndfs(B,X) as an algorithm that runs on Büchi automaton B with random seed X , influ-

encing the order of traversing successors. We ran Ndfs(B,X) 500 times with random

X on a number of Büchi automata B. Each time, we measured f (B,X), the time that it

takes for Ndfs(B,X) to detect an accepting cycle.

In Figure 6.19, we show the cumulative probability F(B, t) that one Ndfs worker

will detect an accepting cycle in less than t seconds for some examples from the Beem

database. We can also define FN(B, t) as the cumulative probability that a swarm of N
independent workers will find an accepting cycle within t seconds. Figure 6.20 shows

F16(B, t) for the same automata. We also computed the expected time to completion

and the standard deviation. The new distribution can be easily computed as:

FN(B, t) = 1− (1−F(B, t))N

From Figure 6.19 and Figure 6.20, we observe that considerable gains can be ex-

pected from a simple parallelization as in Swarmed Ndfs. It also shows that the actual

speedup depends highly on the models: when all runs find an accepting cycle in about

the same time (indicated by plateaus connected by a steep curve), the expected gain

is much less than when the curve is flatter, as is the case for anderson.8.prop3,
bakery.8.prop4 and peterson.6.prop4.

Next, we want to compare our actual implementation with these predictions. To this

end, we compared the expected completion times with actual completion times, aver-

aged over 5 runs. We collected this information in Table 6.1. In the first two columns

(Statistical model), we copied the averages from Figure 6.19, 6.20 for 1 and 16 work-

ers, and computed the expected speedup. Note that this speedup for 16 workers is way

below 16. Next, we experimented with four different scenarios described below.

The next column (Distributed), corresponds to Swarmed Ndfs as it would run on

different machines in a GRID. Here the only synchronization would be to terminate

all workers as soon as the first worker has detected a cycle. The runtimes denote the

completion time for the earliest run out of 16 independent workers; we again provide the

average from 5 experiments. The corresponding speedupsmatch closely to the predicted

ones from the statistical model.

Next, we ran the experiments on the multi-core machine with 16 cores described

before. Now the workers share the basic infrastructure. This is the same setting as the

multi-core Swarmed Ndfs from the previous section. For instance, all states will be

stored only once in a shared hash table. Also, several workers now share information

in the L2 cache. On the other hand, they might now suffer from cache coherence over-

head or memory bus contention. The figures under “Shared Memory” show that the
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Figure 6.19: Cumulative prob. distribution of finding a bug (measured for 1 worker).

Figure 6.20: Cumulative prob. distribution of finding a bug (calculated for 16 workers).

speedups in a multi-core environment are slightly better than on independent machines

(Distributed).

On multi-core machines it becomes easier to share information, in order to guide

different workers into different parts of the state space. In that case, one would expect

better speedup figures. We did an experiment with what we call the fresh successor
heuristic. Here a worker will randomly select a globally unvisited successor if that

exists, otherwise it randomly selects any successor. As the column Heuristic shows,

this can dramatically improve the speedup of 16 workers. In some cases, each time
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Table 6.1: Runtimes and speedups of bug hunting using embarrassingly parallel (ran-

domized) Ndfs and LNdfs. The first two columns of the table present the expected

completion time derived from 500 sequential experiments for 1 and 16 cores. The other

columns give parallel runtimes for, respectively, a distributed implementation, our ran-

domized shared-memory implementation [Laa+11], and another shared-memory im-

plementation using the fresh successor heuristic. The second row gives the speedups.

Ndfs LNdfs

1 core 16 core 16 core
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Runtimes (sec)

anderson.8.prop3 58.1 39.0 39.3 39.4 9.6 8.6 3.1

bakery.7.prop3 5.0 2.9 2.9 2.1 0.6 0.8 0.3

bakery.8.prop4 26.4 14.7 13.6 12.9 0.6 1.9 1.1

elevator2.3.prop3 8.1 4.5 4.2 2.6 0.7 2.1 0.2

extinction.4.prop2 4.4 1.1 0.8 0.5 0.0 0.0 0.0

peterson.6.prop4 33.8 20.1 24.2 16.7 12.5 2.5 2.2

szymanski.5.prop4 27.1 21.6 20.9 19.4 0.0 3.3 0.0

Speedups

anderson.8.prop3 1.5 1.5 1.5 6.1 6.7 18.5

bakery.7.prop3 1.7 1.7 2.4 8.6 6.3 15.2

bakery.8.prop4 1.8 1.9 2.0 45.7 14.1 23.2

elevator2.3.prop3 1.8 1.9 3.1 11.7 3.8 41.8

extinction.4.prop2 4.1 5.9 8.9 ?? ?? ??

peterson.6.prop4 1.7 1.4 2.0 2.7 13.5 15.6

szymanski.5.prop4 1.3 1.3 1.4 ?? 8.3 ??

an accepting cycle was found in such a small instant that a meaningful speedup figure

could not be computed.

Finally, using LNdfs, the total amount of work is decreased, because workers prune
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each other’s search space. Again, we experimented with two versions, which are shown

in the two right-most columns. We computed the average runtime of 5 experiments on

16 cores with the random shared-memory implementation. Note that this is the imple-

mentation that was used in all previous experiments in Section 6.3. The figures show

again a big improvement over Swarmed Ndfs, even on a multi-core machine. Inter-

estingly, the fresh successor heuristic also works very well for the LNdfs-algorithm,

speeding up the algorithm several times. Similar findings hold for all other parallel

Ndfs versions in the current chapter, because they behave similarly on models with

accepting cycles (see Figure 6.13 and Figure 6.14).

6.5 Conclusion

In the current chapter, we experimentally compared two recent parallel Ndfs-based al-

gorithms, ENdfs [EPY11] and LNdfs [Laa+11]. We also compared themwith Swarmed

Ndfs and with the BFS-based algorithm Otf_Owcty [BBR09a]. We now summarize

the conclusions from our experiments.

For systems with bugs (accepting cycles), both ENdfs and LNdfs outperform

Otf_Owcty by large, so they fully enjoy the on-the-fly property. We have also shown

that ENdfs and LNdfs performmuch better than parallel random search, as in Swarmed

Ndfs.

On examples without bugs, it appears that ENdfs beats LNdfs in most of the cases,

due to the fact that there are still too few red states to prune the blue search in LNdfs.

However, in a number of other cases ENdfs still scales rather badly, due to the fact that

the sequential repair strategy traverses large parts of the state space. Interestingly, it is

possible to use the parallel LNdfs algorithm as the repair strategy of ENdfs. For this

new combined algorithm, all examples of the Beem database showed a decent speedup.

On examples without bugs, Otf_Owcty beats both LNdfs and ENdfs in a majority

of the cases, but still it is slower on a number of other examples. The combination of

ENdfs and LNdfs, however, provided a good match for Otf_Owcty, especially for

the larger inputs. This shows that the new branch of parallel Ndfs algorithms is rather

promising.

Future work. Although all Ndfs-versions have been implemented in the same

framework so that we compare the algorithmic differences, Otf_Owcty was imple-

mented in the DiVinE tool. We note that our computation of the next-state() func-
tion uses the same code as DiVinE. A reimplementation of Otf_Owcty using shared

hash tables will probably increase its speedup, as indicated by results on pure reacha-

bility (see Part II). For complex LTL properties, however, Otf_Owcty might exhibit
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non-linear behavior. It would be interesting to compare the bahavior of the multi-core

Ndfs algorithms for such cases (the properties used in the Beem database are rather

simple).

Final note. In the next chapter, we show a parallel Ndfs algorithm that can fully

share global information from both the blue and the red search, without the need to

resort to a repair strategy.

173





7
Improved Multi-Core Nested Depth-First Search

Sami Evangelista, Alfons Laarman, Laure Petrucci, Jaco van de Pol

Abstract

The current chapter presents Cndfs, a tight integration of two earlier multi-

core nested depth-first search (Ndfs) algorithms for LTL model checking. Cndfs

combines the different strengths and avoids some weaknesses of its predecessors.

We compare Cndfs to an earlier ad-hoc combination of those two algorithms and

show several benefits: It has shorter and simpler code and a simpler correctness

proof. It exhibits more robust performance with similar scalability, while at the

same time reducing memory requirements.

The algorithm has been implemented in the multi-core backend of the LTSmin

model checker, which is now benchmarked for the first time on a 48 core machine

(previously 16). The experiments demonstrate better scalability than other paral-

lel LTL model checking algorithms, but we also investigate apparent bottlenecks.

Finally, we noticed that the multi-core Ndfs algorithms produce shorter counterex-

amples, surprisingly often shorter than their BFS-based counterparts.

About this chapter: The current chapter is based on the paper “Improved Multi-
Core Nested Depth-First Search”, which was published at the ATVA 2012 confer-
ence [Eva+12].

Building on the combination of of multi-core algorithms in the previous chapter, we
present a new integrated algorithm, called Cndfs, with improved performance, re-
duced memory usage, and shorter correctness proof.

The original text from [Eva+12] has been improved by correcting an error in the basic
nested depth-first search algorithm (Algorithm 7.1). A missing check for cyan states
in the main DFS loop would cause the previously published algorithm to enter an
infinite loop. Also, the general introduction was removed.
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7.1 Introduction

Some properties, like safety properties, rely on a complete enumeration of system states

and can thus be easily parallelized since they do not ask for a specific search order.

However, the problem is harder when it comes to the verification of linear temporal logic
(LTL) properties. LTLmodel checking can be reduced to a cycle detection problem and

state-of-the-art algorithms [Cou+92; Cou99; GV04] proceed depth-first since cycles are

more easily discovered using this search order. However, this characteristic also makes

them unsuitable for parallel architectures since DFS is inherently sequential [Rei85].

One approach to address this issue is to sacrifice the optimal linear complexity pro-

vided by DFS algorithms and switch to BFS-like algorithms, which are highly scalable

both theoretically and experimentally. We compare our approach to the best represen-

tative of that family. More recently, two algorithms (LNdfs from Chapter 5 and ENdfs

from [EPY11]) adapted the well known Nested DFS (Ndfs) algorithm [Cou+92] to

multi-core architectures. They share the principle of launching multiple instances of

Ndfs that synchronize themselves to avoid useless state revisits. Although they are

heuristic algorithms in the sense that, in the worst case, they reduce to spawn multiple

unsynchronized instances of NDFS, the experiments reported in Chapter 5 and Chap-

ter 6 show good practical speedups.

The contribution of the current chapter is an improvement to both the LNdfs and

ENdfs algorithms, called Cndfs. This new algorithm is both much simpler and uses

less memory, making it more compatible with lossy compression techniques such as

tree compression (Chapter 3) that can compress large states down to two integers. We

also pursue a thorough experimental evaluation of this algorithm on the models of the

Beem database [Pel07] with an implementation of this algorithm on top of the LTSmin

toolset [BPW10; LPW11a]. The outcome of these experiments is threefold. Firstly,

Cndfs exhibits a similar speedup to its predecessors, but achieves this more robustly,

with smoother speedup lines, while using less memory. Second, it combines nicely

with heuristics limiting the amount of redundant work performed by individual threads.

Finally, in the presence of bugs, it reports counterexamples that are usually much shorter

than those reported byNdfs and, more importantly, this length tends to decrease asmore

working threads get involved in the verification. This property is quite appreciable from

a user perspective as it eases the task of error correction.

The outline of the current chapter is the following. In Section 7.2 we formally ex-

press the LTL model checking problem and review existing (sequential and parallel) al-

gorithms that address it. Cndfs, our new algorithm, is introduced and formally proven

in Section 7.3. Our experimental evaluation of this algorithm is summarized in Sec-

tion 7.4. Finally, Section 7.5 concludes the current chapter and explores some research
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perspectives to this work.

7.2 Background

We give in this section the few ingredients that are required for the understanding of the

current chapter and briefly review existing works in the field of explicit parallel LTL

model checking based on the automata theoretic approach.

7.2.1 The Automata-Theoretic Approach to LTL Model Check-
ing

LTLmodel checking is usually performed following the automata-based approach origi-

nating from [VW86] that proceeds in several steps. In the current chapter, we focus only

on the last step of the process that can be reduced to a graph problem: given a graph

representing the synchronized product of the Büchi property automaton and the state

space of the system, find a cycle containing an accepting state. Any such identified

cycle determines an infinite execution of the system violating the LTL formula. In the

current chapter, we will only reason on automaton graphs that result from the product

of a Büchi property automaton and a system graph describing the dynamic behavior of

the modeled system.

Definition 7.1 (Automaton graph). An automaton graph is a tuple G = (S,T ,F ,s0),
where S is a finite set of states; T ⊆ S ×S is a set of transitions; F ⊆ S is the set of
accepting states; and s0 ∈ S is an initial state.

Notations. Let (S,T ,F ,s0) be an automaton graph. For s ∈ S the set of its successor
states is denoted by succ(s) = {s′ ∈ S | (s,s′)∈T }. (s,s′)∈T is also denoted by s→ s′.
s→+ s′ (s→∗ s′) denotes the (reflexive) transitive closure of T , i.e. the fact that s′ is
reachable from s. A path is a state sequence s1, . . . ,sn with si→ si+1, ∀i∈{1, . . . ,n−1},
a cycle is a path s1, . . . ,sn with s1 = sn and a cycle C ≡ s1, . . . ,sn is an accepting cycle
if C∩F �= /0. An accepting run is an accepting cycle reachable from the initial state:

s0, . . . ,si, . . . ,sn where si = sn. The LTL model checking problem consists of finding

an accepting run in an automaton graph. An LTL model checking algorithm proceeds

on-the-fly if it can report an accepting run without visiting all transitions.

7.2.2 Sequential LTL Model Checking Algorithms

Ndfs [Cou+92] was the first LTL model checking algorithm proposed. It enjoys several

nice properties: an optimal linear complexity, the on-the-fly discovery of accepting
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cycles and a low memory consumption (2 bits per state). Two variations of Tarjan’s

algorithm for SCC decomposition [Cou99; GV04] have also been proposed with similar

characteristics but we focus here on Ndfs as our new algorithm is a direct descendant

of this one.

Algorithm 7.1 Ndfs [VW86] as presented in [SE05].

1: procedure ndfs(sI)

2: dfsBlue(sI)
3: report no-cycle
4: procedure dfsRed(s)
5: t.red := true
6: for all t in next-state(s) do
7: if t.cyan then report cycle
8: else if ¬t.red then dfsRed(t)

9: procedure dfsBlue(s)
10: s.cyan := true
11: for all t in next-state(s) do
12: if ¬t.cyan∧¬t.blue then
13: dfsBlue(t)
14: if s ∈ F then dfsRed(s)
15: s.blue := true
16: s.cyan := false

The pseudo-code of this algorithm is given by Algorithm 7.1. The algorithm per-

forms a first level DFS (the blue DFS) to discover accepting states. When such a state

is backtracked from, a second level DFS (the red DFS) is launched to see whether this

accepting state (now called the seed) is reachable from itself and is thus part of an ac-

cepting cycle. If this is the case, the algorithm reports a cycle and exits on Line 7. It is

sufficient to find a path back to the stack of the blue DFS [SE05], hence the cyan color

in Algorithm 7.1. Correctness depends on the fact that different invocations of the red

DFS happen in postorder. The algorithm works in linear time: each state is visited at

most twice, since the result of a red DFS can be reused in subsequent red DFSs; states

retain their red color.

7.2.3 Parallel LTLModel CheckingAlgorithms for Shared-Memory
Architectures

In the field of parallel LTL model checking, the first algorithms designed targeted dis-

tributed memory architectures like clusters of machines. This family of algorithms in-

cludes Map [Bri+04], Owcty [ČP03] and Bledge [BBC03b; BBC05b]. It is however

well known that this kind of message passing algorithm can be easily ported to shared-

memory architectures like multi-core computers although the specifics of these archi-

tectures must be considered to achieve good scalability [BBR10b]. Their common char-

acteristic is to rely on some form of breadth-first search (BFS) of the graph that has the

advantage of being easily parallelized, unlike depth-first search (DFS) [Rei85]. They

hence deliver excellent speedups but sacrifice optimality and the ability to report ac-
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cepting cycles on-the-fly. A combination of Owcty and Map (Otf_Owcty [BBR09a])

restores “on-the-flyness”, is linear-time for the class of weak LTL properties, and main-

tains scalability (other algorithms are discussed in Section 5.3).

swarmverification [HJG08] consists of spawningmultiple unsynchronized instances

of Ndfs each exploring the graph in a random way. Accepting cycles are expected to be

reported faster thanks to randomized parallel search, but in the absence of such cycles

parallelization does not help. This pragmatic strategy however targets graphs that are

too large in any case to be explored in reasonable time. The purpose is then to maximize

the graph coverage in a given time frame and thereby increase confidence in the model.

Two recent multi-core algorithms follow the principle of the SWARM technique

but deviate from it in that working threads executing Ndfs are synchronized through

the sharing of some state attributes. In the first one, LNdfs from Chapter 5, workers

share the outcome of the red (nested) search which can then also be used to prune the

blue search. Since the blue flags are not shared among threads, the red searches are

still invoked in the appropriate DFS postorder. The ENdfs algorithm [EPY11] also

allows the sharing of blue flags, but a sequential emergency procedure is triggered if

the appropriate invocation order of the red DFS is not respected. Moreover, to maintain

correctness, information on a red DFS in progress cannot be transmitted in “real time”

to other threads: the states visited by a red DFS are only marked globally red after it

has returned.

A thorough experimental comparison of ENdfs and LNdfs in Chapter 6 led to the

main conclusion that ENdfs and LNdfs complement each other on a variety of models:

the larger amount of information shared by ENdfs can potentially yield a better work

distribution, but LNdfs is to be preferred when ENdfs threads often launch unfruitful

emergency procedures. Since this emergency procedure launches the sequential Ndfs

algorithm, large portions of the graph may then be revisited, in the worst case by all

workers. Hence, a combination of ENdfs and LNdfs was proposed in Chapter 6 to

remedy the downsides of the two algorithms. The principle of that parallel algorithm

(called NMCNdfs) is to run ENdfs but replace its sequential emergency procedure by a

parallel LNdfs. Experiments show that this combination pays off: NMCNdfs is always

at least as fast as ENdfs or LNdfs.

While NMCNdfs combines the strengths of both earlier algorithms in terms of per-

formance, it also conjoins their memory usage. LNdfs requires 2P+ log2(P)+ 1 bits

per state (2 local colors for all P workers, a synchronization counter and a global red

bit) and ENdfs 4P+ 3 (2 local colors plus another 2 for the repair procedure and 3

global bits: {dangerous,red,blue}). Next to more than doubling the memory usage,

the conglomerated algorithm is long and complex.
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7.3 A New Combination of Multi-Core NDFS

To mitigate the downsides of NMCNdfs, we present a new algorithm, Cndfs, shown in

Algorithm 7.2. Like the previous multi-core algorithms, it is based on the principle of

swarm worker threads which traverse state space in randomized depth-first order. (in-

dicated by subscript p here), sharing information via colors stored in the visited states,

here: blue and red. With next-stateb
p (next-stater

p), we denote the random permu-

tation of successors used in the blue (red) dfs by worker p. After randomly visiting

all successors (Line 13–Line 15), a state is marked blue at Line 16 (meaning “globally

visited”) and causing the (other) blue DFS workers to lose the strict postorder property.

Algorithm 7.2 Cndfs, a new multi-core algorithm for LTL model checking

1: procedure cndfs(s0,P)
2: dfsBlue1(s0) || .. || dfsBlueP(s0)
3: report no-cycle
4: procedure dfsRedp(s)
5: Rp :=Rp∪{s}
6: for all s′ do next-stater

p(s)
7: if s′.cyan[p] then
8: report cycle
9: if s′ �∈ Rp∧¬s′.red then

10: dfsRedp(s
′)

11: procedure dfsBluep(s)
12: s.cyan[p] := true
13: for all s′ do next-stateb

p(s)
14: if ¬s′.cyan[p]∧¬s′.blue then
15: dfsBluep(s

′)

16: s.blue := true
17: if s ∈ F then
18: Rp := /0
19: dfsRedp(s)
20: await ∀s′ ∈Rp∩F : s �= s′ ⇒ s′.red
21: for all s′ doRp
22: s′.red := true
23: s.cyan[p] := false

If the state s is accepting, as usual, a red DFS is launched at Line 19 to find a cycle.

At this point, state s is called “the seed”. All states visited by dfsRedp are collected

in Rp. If no cycle is found in the red DFS, we can prove that none exists for the seed

(Proposition 7.1). Still, because the red DFS was not necessarily called in postorder,

other (non-seed, non-red) accepting states may be encountered for which we know noth-

ing, except the fact that they are out of order and reachable from the seed. These are

handled after completion of the red DFS at Line 20 by simply waiting for them to be-

come red.

Our proof shows that in this scenario there is always another worker which can

color such a state red (Proposition 7.3). The intuition behind this is that there has to

be another worker to cause the out-of-order red search in the first place (by coloring

blue) and, in the second place, this worker can continue its execution because cyclic
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waiting configurations can only happen for accepting cycles. These accepting cycles

would however be encountered first, causing termination and a cycle report (Line 8).

After completion of the waiting procedure, Cndfs marks all states in Rp globally red,

pruning other red DFSs.

The crude waiting strategy requires some justification. After reassessing the ingre-

dients of LNdfs and ENdfs, we found that ENdfs is most effective at parallelizing the

blue DFS. This is absolutely necessary since the number of blue states (all reachable

states) typically exceeds the number of red states (visited by the red DFS). In ENdfs,

however, sharing the blue color often led to the expensive (memory and performance

wise) sequential repair procedure [EPY11]. We were unable to construct a correct algo-

rithm that colors both blue and red while backtracking from the respective DFS proce-

dures. Therefore, we now want to investigate whether the intermediate solution, using

a wait statement as a compromise, leaves enough parallelism to maintain scalability.

Cndfs only uses P+ 2 bits per state plus the sizes of R. In the theoretical worst

case (an accepting initial state), each worker p could collect all states inRp. In our vast

set of experiments (cf. Sec. 7.4), however, we found that the set rarely contains more

than one state and never more than thousands, which is still negligible compared to |S|.
Our experiments also confirmed that memory usage is close to the expected amount.

Correctness. Proving correctness comprises two parts: proving the consistency of

the algorithm, i.e. Cndfs reports a cycle iff an accepting cycle is reachable from s0,

and termination. The former turned out to be easier than for our previous parallel Ndfs

algorithms. The wait condition in combination with the late red coloring forces the

accepting states to be processed in postorder. Stated differently: a worker makes the

effects of its dfsRedp(s) globally visible (via the red coloring), only after all smaller (in

postorder) accepting states t have been processed by some dfsRedp′(t). This is expressed
by Lemma 7.3. In Theorem 7.1, we finally show that, if the algorithm terminates without

reporting a cycle, all accepting states must be red and consequently cannot lie on a cycle.

Proof of termination was already discussed briefly and is detailed in Proposition 7.3.

In the following proofs, the graph coloring and the process counter of Algorithm 7.2

are viewed as state properties of the execution. When writing dfsBluep(s)@19, we

refer to the point in the execution at which a worker p is about to call dfsRed on a

state s at Line 19, within the execution of dfsBluep(s). Graph colorings are denoted as

follows: s ∈ Red means that the red flag of s is set to true and similarly s ∈ Blue means

that the blue flag is set. For local flags we use s ∈ Cyanp. Also, we use the modal

operator s∈�X , to express ∀s′ ∈ next-state(s) : s′ ∈X . We show that our propositions

hold in the initial state (∀s ∈ S : s �∈ Red∧ s �∈ Blue∧∀p ∈ {1 . . .P} : s �∈ Cyanp) and

inductively that they are maintained by execution of each statement in the algorithm,
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considering only lines that can influence the truth value of the proposition. Here an

important assumption is that all lines of Algorithm 7.2 are executed atomically.

Lemma 7.1. Red states have red successors: Red ⊆�Red.

Proof. Initially, there are no red states, hence the lemma holds.

States are colored red when dfsBluep@22 and are never uncolored red. The set of

states Rp that is colored at Line 22 contains all states reachable from the seed s, but
not yet red, since dfsRedp(s) performed a DFS from s over all non-red states. For the

red states reachable from s, the induction hypothesis can be applied, hence there are no

non-red states reachable from s that are not inRp.

Lemma 7.2. At Line 20, the set Rp invariably contains (1) the seed s, (2) all non-red
states reachable from s and also (3) all states in the set are reachable from the seed s:
dfsBluep(s)@20⇒ (s∈Rp∧(∀s′ �∈Red : s→∗ s′ ⇒ s′ ∈Rp)∧(∀s′′ ∈Rp⇒ s→∗ s′′)).

Proof. At Line 5, we have s ∈Rp. For the rest, see proof of Lemma 7.1.

Lemma 7.3. The only accepting state that can be colored red at Line 22 (for the first
time) is the current seed s itself: dfsBluep(s)@22⇒ (Rp∩F)\Red ⊆ {s}.

Proof. Assume dfsBluep(s)@22 and ∃a ∈ (F \{s}) : a ∈Rp. We show that a ∈ Red.
By Lemma 7.2,Rp contains at least s and the non-red states reachable from s. After

Line 20, all non-seed accepting states in Rp are red: (Rp ∩ (F \{s})) ⊆ Red. Since,

a ∈Rp∩ (F \{s}), we have: a ∈ Red.

Proposition 7.1. The initial invocation of dfsRedp(s) at Line 19 of Algorithm 7.2 re-
ports a cycle if and only if the seed s belongs to a cycle.

Proof. ⇔ is split into two cases: Case⇒: Every state s′ ∈ Cyanp can reach the seed

from dfsBluep(s)@19 by properties of the DFS stack. Similarly, when dfsRedp(s
′′)@8,

s′′ is reachable from the seed s. Therefore, there is a cycle: s′′ → s′ →∗ s→∗ s′′.
Case ⇐: assume dfsRedp(s) at Line 19 finishes normally (without cycle report),

while s lies on a cycle C. We show this leads to a contradiction. Since dfsRed avoids

only red states (Line 9), there would have to be some r ∈ C ∩ Red obstructing the

search. The state r can only have been colored red at Line 22 by a worker. W.l.o.g.

we investigate the first worker dfsRedp′ to have colored r red. p′ started for an s′ ∈ F
(dfsBluep′(s

′)@Line 19).

Since r is not yet red, by Lemma 7.1 C∩Red = /0. Before r is colored red, it is

first stored inRp′ . By Lemma 7.2, we also have C ⊆Rp′ . Either s′ ∈C, then the cycle

through s′ would have been detected since s′ ∈Cyanp′ . Or else s′ �∈C, and then we have

{s} ⊆ (Rp′ \Red) when dfsBluep′(s
′)@22, contradicting Lemma 7.3.
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Proposition 7.2. Red states never lie on an accepting cycle.

Proof. Initially, there are no red states, hence the proposition holds.

When dfsBluep(s)@22, the set of statesRp is colored red. The only accepting state

to be colored red is the seed s (Lemma 7.3). By Proposition 7.1, this state s does not lie
on an accepting cycle. Hence, Proposition 7.2 is preserved.

Lemma 7.4. Blue states have blue or cyan successors: Blue⊆⋃
p�(Blue∪Cyanp).

Proof. Initially there are no blue states, hence the lemma holds.

Only at Line 16, states are colored blue, after each successor t has been skipped at

Line 14 (t ∈ Cyanp∪Blue), or processed by dfsBluep at Line 15 (leading to t ∈ Blue).
States can be uncolored cyan (Line 23), but only after they have been colored blue

(Line 16).

Lemma 7.5. A blue accepting state, that is not also Cyanp for some worker p, must be
red: ∀a ∈ (Blue∩F) : (∀p ∈ {1 . . .P} : a �∈ Cyanp)⇒ a ∈ Red.

Proof. Assume s ∈ (F ∩Blue) and ∀p ∈ {1 . . .P} : s �∈ Cyanp. We show that s ∈ Red.
State s can only be colored blue when dfsBluep(s)@16. There, it still retains its cyan

coloring from Line 12, it only loses this color at Line 23. But, since s ∈F , Line 22 was

reached and there a ∈Rp by Lemma 7.2. Hence, s ∈ Red at Line 23.

Proposition 7.3. Algorithm 1 always terminates with a report.

Proof. The individual DFSs cannot proceed indefinitely due to a growing set of red and

blue states. So eventually a cycle (Line 8) or no cycle is reported (Line 3). However,

progress may also halt due to the wait statement at Line 20. We now assume towards

a contradiction that a worker p is waiting indefinitely for a state a ∈ F to become red:

dfsBluep(s)@20, s �= a and a ∈ Rp. We will show that either a will be colored red

eventually, or a cycle would have been detected, contradicting the assumption that p
keeps waiting.

By Lemma 7.2, a is reachable from s: s→+ a. And by Line 16, s ∈ Blue. Induction
on the path s→∗ a, using Lemma 7.4, tells us that: either all states are blue (1) or there

is a cyan state on this path (2):

1. a ∈ Blue∧∀p ∈ {1 . . .P} : a �∈ Cyanp: by Lemma 7.5, a ∈ Red, which contra-

dicts the assumption that p is waiting for a to become red. (Note that ∃p′ ∈
{1 . . .P} : a ∈ Cyanp′ is handled in Case 2.)

2. ∃c∈Cyanp′ : s→+ c→∗ a, then depending on the identity of worker p′, we have:
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A) p = p′: but then dfsRedp(s) would have terminated on cycle detection (C≡
s →+ c →+ s), except when dfsRedp did not reach c in presence of a red

state lying on C. However, this would contradict Proposition 7.2.

B) p �= p′: we show that either p′ is executing or going to execute dfsRedp′(a).
To eventually color state a red, worker p′ must not end up itself in a waiting

state: dfsBluep′(a
′)@20. First, consider the case a′ �= a. We also have s→+

c→∗ a′ (stack Cyanp′ ). Hence, by Lemma 7.2, also a′ ∈ Rp. Therefore, we

can assume w.l.o.g. that a = a′ and only consider dfsBluep′(a)@20. We

can repeat the reasoning process of this proof, with p ≡ p′ and s ≡ a. But

since there are finitely many workers, the chain of processes waiting for

each other eventually terminates, except the hypothetical configuration of a

cyclic waiting dependency, which we consider finally.

To exclude cyclic dependencies, assume n≥ 2 workers are simultaneously waiting

for each other’s seed to be colored red at Line 20. We have: dfsBlue1(s1)@20∧ ·· · ∧
dfsBluen(sn)@20∧ s2 ∈ R1 ∧ ·· · ∧ s1 ∈ Rn. This is only possible if s1 →+ sn ∧ ·· · ∧
sn →+ s1, hence there is a cycle: s1 →+ · · · →+ sn →+ s1. However, this contradicts

that the red DFSs (which terminate anyway) would have detected this cycle (Proposi-

tion 7.1).

Theorem 7.1. Algorithm 7.2 reports an accepting cycle if and only if one is reachable
from s0.

Proof. By Proposition 7.3, the algorithm is guaranteed to terminate with some report,

forming the basis for two cases: Case ⇒: dfsRedp(s)@8 implies a cycle (Proposi-

tion 7.1).

Case⇐: At Line 3, we have s0 ∈Blue and ∀p∈{1, . . . ,P} : Cyanp = /0 by properties

of DFS.Now, by Lemma 7.4, we have: ∀s∈G : s0→∗ s⇒ s∈Blue. Hence, all reachable

accepting states must be red by Lemma 7.5 and do not lie on cycles by Proposition 7.2.

7.4 Experimental Evaluation

The experiments in Chapter 2, Chapter 6 and Chapter 5 were performed earlier on 16-

core machines. Meanwhile, in accordance with Moore’s law applied to parallelism,

we obtained access to a 48-core machine (a four-way AMD OpteronTM 6168). The

added parallelism puts extra stress on the scalability of our algorithms and therefore

also forces a repetition of some of our previous experiments. We investigated the cause
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for the performance difference between various algorithms: NMCNdfs fromChapter 6,

Cndfs (the current chapter), Otf_Owcty [BBR09a] and reachability from Chapter 2.

Work duplication due to overlapping stacks can cause slowdowns for all multi-coreNdfs

variants, as can long await cycles in Cndfs. We introduced counters to measure and

study these effects. Initially, we focus on models without cycles, the hardest case for

these algorithms. Later, we move on to show that Cndfs exhibits the same on-the-fly

performance as the multi-core Ndfs variants of the previous two chapters.

7.4.1 Experimental Setup

We have used models from the Beem database [Pel07].7.1 From each type of model,

we selected the variants with more than 9 million states. Our Cndfs algorithm is im-

plemented in the multi-core backend of the LTSmin model checking toolset [LPW11a],

based on a dedicated scalable lock-free hash table. For a fair comparison with previous

algorithms, we also implemented some Ndfs optimizations (see Section 5.4.4), all-red
and early cycle detection. All-red colors a state s red, if all its successors are red af-

ter Line 15 of Algorithm 7.2; correctness follows from Proposition 7.2. Early cycle

detection detects certain accepting cycles already in the blue search.

LTSmin 1.97.2 was compiled with gcc 4.4.2 (with optimization -O2) and ran with:

dve2lts-mc --threads=N -s28 --state=table --strategy=name,
where name can be cndfs or endfs,lndfs, representing the different algorithms

(see Chapter 6). We used DiVinE 2.5.2 [Bar+10] as Otf_Owcty implementation, com-

piled and run with equivalent parameters. Since LTSmin reuses its next-state function,

both tools are comparable (see Chapter 2).

7.4.2 Models without Accepting Cycles

In Chapter 6, we showed that NMCNdfs was the best scaling LTLmodel checking algo-

rithm on 16 core machines. Hence, we started comparing plain Cndfs and NMCNdfs.

Table 7.1 shows the average runtime of both algorithms over five runs on all benchmarks,

for 1, 8, 16 and 48 cores. The performance of Cndfs is on par with that of NMCNdfs,

which is impressive considering the crude waiting strategy of the algorithm.

We confirmed that the time spent at the await statement (Line 20 in Algorithm 7.2)

is indeed less than 0.01 sec on runs with 48 cores for all Beem models. This is caused

by the all-red extension, which greatly reduces work in the red DFS. Without all-red,

we observed high waiting times causing speeddowns with more than 8 cores.

7.1 All results are available at http://fmt.cs.utwente.nl/tools/ltsmin/atva-2012/.
7.2 http://fmt.cs.utwente.nl/tools/ltsmin/ next branch, v.1.9 is due Aug. 2012.
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Figure 7.5: Speedup rether.7.p5 Figure 7.6: Speedup synapse.7.p3



7

7.4 Experimental Evaluation

Table 7.1: Runtimes (sec) with NMCNdfs and Cndfs for all models.

States
NMCNdfs Cndfs

1 8 16 48 1 8 16 48

anderson.6.prop2 2.9E+7 144.0 46.5 31.3 23.7 146.6 47.2 31.7 23.6

anderson.6.prop4 3.6E+7 172.9 54.1 35.8 27.1 172.9 54.3 36.2 27.3

bakery.9.prop2 1.1E+8 378.9 62.4 35.5 18.9 368.9 64.6 36.9 19.9

bopdp.4.prop3 2.4E+7 74.7 11.1 6.4 3.3 74.9 11.0 6.4 3.3

elevator.5.prop3 2.1E+8 1,387.0 272.7 154.6 67.3 1,390.8 273.3 154.2 71.2

elevator2.3.prop4 1.5E+7 134.6 25.7 15.5 8.7 136.9 25.5 15.8 8.7

lamport.7.prop4 7.4E+7 299.2 61.9 35.5 23.5 297.7 60.8 35.9 22.9

leader_election.6.prop2 3.6E+7 1,495.2 189.5 194.5 31.9 1,501.9 190.1 94.5 32.2

leader_filters.6.prop2 2.1E+8 444.2 59.5 30.4 12.4 439.0 59.5 31.0 12.8

leader_filters.7.prop2 2.6E+7 73.5 9.7 6.4 2.3 73.3 9.4 5.0 2.3

lup.4.prop2 9.1E+6 19.6 4.7 2.9 2.2 19.5 4.7 2.9 2.1

mcs.5.prop4 1.2E+8 538.3 147.0 89.9 58.2 540.3 146.5 90.2 57.1

peterson.5.prop4 2.6E+8 1,186.0 229.4 135.3 84.9 1,146.5 226.2 133.0 83.6

rether.7.prop5 9.5E+6 43.0 6.2 3.8 2.7 43.6 6.3 3.9 2.6

synapse.7.prop3 1.5E+7 37.3 5.6 3.3 2.0 37.1 5.5 3.3 1.9

Additionally, we made a comparison of absolute speedups so as to investigate the

properties of the different algorithms (Figure 7.1–7.6). For Cndfs and NMCNdfs, we

included the standard deviation of the 5 runs as error bars. As the base case for the

speedup of the LTL algorithms, we used Cndfs: Sn = TCndfs
1 /T algo

n , for reachability

we used its own base case. We included reachability from Chapter 2 to serve as a

reference point for Cndfs. We were primarily interested in comparing the scalability of

Cndfs with our parallel reachability implementation. After all, sequential NDFS visits

each state at most twice; once in the blue DFS and possibly once in the red DFS.

We notice that NMCNdfs and Cndfs are always faster than Otf_Owcty. The error

bars show less robust, fluctuating runtimes for NMCNdfs (e.g. leader_filters).
Upon investigation it turned out that NMCNdfs sometimes launches a repair search

even though we also fitted its ENdfs search with all-red. When only few workers enter

this repair search, it cannot be parallelized. In these cases, Cndfs turns to waiting, a

187



Improved Multi-Core Nested Depth-First Search

7

Table 7.2: Expected and actual speedups for Cndfs according to speedup model.

|G| Bfsh
48 Rfsh

48 Sreach
48 Dfsh

48 Efsh
48 Sfsh

48 Dcndfs
48 Ecndfs

48 Scndfs
48

anderson.6.prop2 3E+7 1E+8 4E+3 30.6 3.6 8.6 6.4 4.7 6.6 4.6

anderson.6.prop4 4E+7 1E+8 3E+3 31.9 3.1 10.2 6.4 4.0 8.0 5.0

bakery.9.prop2 1E+8 2E+8 4E+5 28.0 1.4 20.5 19.2 1.6 17.2 14.3

bopdp.4.prop3 2E+7 3E+7 6E+5 26.2 1.3 20.0 22.8 1.8 14.6 15.5

elevator.5.prop3 2E+8 4E+8 2E+3 39.5 1.9 21.0 19.5 3.2 12.5 9.0

elevator2.3.prop4 1E+7 3E+7 2E+6 33.2 2.0 16.3 15.8 5.3 6.3 8.0

lamport.7.prop4 7E+7 1E+8 6E+4 30.5 1.7 17.6 13.3 1.9 15.8 10.4

leader_el.6.prop2 4E+7 4E+7 4E+4 40.5 1.0 40.4 46.6 1.0 40.3 39.5

leader_filt.6.prop2 2E+8 2E+8 7E+5 31.9 1.0 31.6 34.4 1.0 30.7 29.9

leader_filt.7.prop2 3E+7 3E+7 1E+5 27.6 1.0 27.4 31.9 1.0 26.9 27.8

lup.4.prop2 9E+6 2E+7 4E+3 17.7 2.5 7.1 9.7 4.6 3.8 6.3

mcs.5.prop4 1E+8 3E+8 1E+4 34.4 2.2 15.7 9.5 2.7 12.6 7.3

peterson.5.prop4 3E+8 4E+8 8E+5 34.1 1.6 20.9 13.9 1.9 18.3 11.0

rether.7.prop5 1E+7 2E+7 1E+5 22.3 1.9 11.9 16.5 2.4 9.2 14.3

synapse.7.prop3 2E+7 2E+7 1E+2 20.4 1.1 17.9 19.2 1.2 17.0 18.6

much better strategy, since in total it waits less than 0.01 sec. Also, reachability scales

sometimes twice as good as Cndfs; anderson even scales 5 times better.

We investigated why the speedup of Cndfs differs from reachability. We measured

the total amount of work performed by all workers. In particular, we counted for each

benchmark the state count |G|, and the numbers Bn and Rn, the total number of blue

and red colorings in a run with n cores. Next, we estimate the duplicate work compared

to reachability as Dn := (Rn +Bn)/|G|. We view the reachability speedups Sreach
n as

ideal (under the plausible assumption that maximal speedup is limited mostly by the

memory bandwidth). Hence we can calculate the expected speedup Ealg
n := Sreach

n /Dalg
n

for alg ∈ {fsh,cndfs} where fsh is Cndfs with heuristics (see below).

Table 7.2 compares these estimated speedups E48 with the actual speedups S48.

Note that the estimated speedups for Cndfs Ecndfs
48 correspond nicely with the mea-

sured speedups Scndfs
48 for many benchmarks. Hence, we conclude that the variation in

speedup is mainly caused by the degree of work duplication.
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Figure 7.7: Work duplication per core per model

To combat work duplication, we reuse the “fresh successor heuristics” (Chapter 6).

If possible, this randomly selects a successor that has not yet been visited before. It is

available in the LTSmin toolset (--perm=dynamic). As a consequence, workers tend

to be directed towards different regions of the state space, reducing work duplication.

These results are also shown in Table 7.2: Dfsh
48 , Efsh

48 and Sfsh
48 together with the

measured amount of blue and red colorings: Bfsh
48 and Rfsh

48 . The heuristic approach shows

quite some improvement, sometimes halving work duplication and doubling speedup

(see elevator). Still we see duplications as high as 3.6 (see anderson). Note that

the earlier benchmarks in Figure 7.1–7.6 already use this heuristic.

We expect that in the near future, the number of cores in many-core systems will

still grow. Will this increase work duplication and put a limit on speedup of Cndfs?

To give an indication, we plotted the increase of work duplication with a growing num-

ber of cores with fresh successor heuristics (Figure 7.7). The increase is sublinear, so

we expect that speedups will be maintained on larger many-core systems with similar

architecture and scaling bandwidth characteristics.

Finally, we note that the size of the input has a small yet significant effect on the

amount of work duplication; models with higher state count have less duplication.

7.4.3 Models with Accepting Cycles

In Chapter 6, we experimented thoroughly to investigate the “on-the-flyness” of swarm

Ndfs and LNdfs. We noticed that the benefits of independent swarm verification is

limited, on average only yielding a speedup of 2-8 on 16 core machines. LNdfs however

yielded speedups from 4 to 14. Combined with the fresh successor heuristic speedups
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often became superlinear. This is not surprising [RK88], because we verified that in

those cases there are many cycles, distributed evenly over the state space.

We performed the same experiments again with Cndfs on a 48 core machine. The

results in Table 7.3 show that Cndfs exhibits the same desirable on-the-fly behavior

as LNdfs, scaling up to 48 cores. For completeness, we also included the runtimes

and speedups with Otf_Owcty in the table. Its heuristic on-the-fly behavior seems

to fail in some cases. It must however be mentioned that the on-the-fly capabilities

of this algorithm have recently been improved by changing its exploration order to be

more DFS-like [Bar+11a]. In [Bar+11a], performance is reported on par with LNdfs.

Unfortunately, we do not have the means (a GPGPU) to reproduce any results here.

Table 7.3: On-the-fly behavior of parallel LTL algorithms

1 core 48 core Otf_Owcty

Ndfs LNdfs Cndfs 1 core 48 core

model R
an

d
.

R
an

d
.

F
sh

R
an

d
.

F
sh

.

S
ta
ti
c

R
an

d
.

Runtimes (sec)

anderson.8.prop3 36.4 4.0 1.2 4.1 0.2 2858.8 1433.2

bakery.7.prop3 3.2 0.4 0.2 0.3 0.2 2.2 5.2

bakery.8.prop4 15.7 0.6 0.3 0.6 0.3 73.4 14.3

elevator2.3.prop3 8.4 1.4 0.2 1.4 0.2 432.3 192.5

extinction.4.prop2 2.2 0.1 0.1 0.1 0.1 1.8 1.7

peterson.6.prop4 29.1 0.6 0.5 0.9 0.5 668.4 705.7

szymanski.5.prop4 1.7 1.4 0.1 1.3 0.2 2.1 376.4

Speedups

anderson.8.prop3 9.1 31.1 8.8 175.0 2.0

bakery.7.prop3 8.7 18.3 10.9 21.2 0.4

bakery.8.prop4 28.3 51.1 26.2 48.9 5.1

elevator2.3.prop3 6.0 51.5 5.9 52.1 2.2

extinction.4.prop2 30.4 32.1 18.5 28.8 1.0

peterson.6.prop4 46.1 59.8 33.0 62.4 0.9

szymanski.5.prop4 1.2 12.0 1.3 10.9 0.0
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7.4.4 Counterexample Length

Lengthy counterexamples are hard to study evenwith goodmodel checking tools. There-

fore, finding short counterexamples is quite an important property of model checking

algorithms. Strict BFS algorithms deliver minimal counterexamples, while DFS al-

gorithms can yield very long ones. Once the strict BFS/DFS order is loosened, these

properties can be expected to fade. This is exactly what both Otf_Owcty and Cndfs

do. We studied the length of the counterexamples that these algorithms produce.

For this purpose, 45 models with counterexamples were selected from the Beem

database, all algorithms run 5 times, and computed the average counterexample length

and standard deviation. The results are summarized in scatter plots with bars represent-

ing the standard deviation. Figure 7.8 compares randomized sequential Ndfs (vertical

axis) against sequential Otf_Owcty (horizontal axis). Figure 7.9 compares the results

of Cndfs with fresh successor heuristic (fsh) against Otf_Owcty on 48 cores.

In the sequential case, most bars are above the equilibrium so, as expected, Ndfs

produces longer counterexamples ofmore variable size compared toOtf_Owcty (which

we could not randomize). The parallelism of a 48-core run, however, greatly stabilizes

and reduces counterexample lengths for Cndfs, while the randomness added by paral-

lelism introduces variation for Otf_Owcty (horizontal bars). In most cases, Cndfs’

counterexamples become shorter than those of Otf_Owcty, a surprising result consid-

ering the latter’s BFS-like order. An outlier isplc.4: All Ndfs algorithms consistently

find a counterexample of length 216, while Otf_Owcty finds one of length 2!

Figure 7.8: Ndfs vs Otf_Owcty (1 core) Figure 7.9: Fsh vs Otf_Owcty (48 cores)
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7.5 Conclusion

We presented Cndfs, a new multi-core Ndfs algorithm. It can detect accepting cycles

on-the-fly, and its worst case execution time is linear in the size of the input graph. We

showed that Cndfs is considerably simpler than its predecessor NMCNdfs, because

of the deep integration of ENdfs and LNdfs. Experiments show that Cndfs delivers

performance and scalability similar to its predecessors, but achieves this more robustly.

Hence Cndfs is currently the fastest multi-core LTL model checking algorithm in prac-

tice. Moreover, Cndfs halves the memory requirements per state per worker thread; an

important factor since the total number of cores keeps growing.

Experiments revealed that the main bottleneck for perfect scalability of Cndfs is

currently the work duplication due to overlapping stacks. Forcing workers to favor

“fresh” successor states already decreases duplication. The same experiments indicate

that work duplication grows only linearly in the number of cores, and decreases for

larger input sizes. From this we conjecture that Cndfs will scale even beyond 48 cores.

Cndfs shares global information only during or even after backtracking, which leads

to potential work duplication. In the worst case, every worker could visit the whole

graph, blocking any speedup. During our extensive experiments with the entire Beem

database we have not found such cases. However, we did observe work duplication of

factor 3 on 48 cores, so there is room for improvement.

Designing a provably scalable, linear-time algorithm remains an open question.

Such an algorithm should cause negligible duplicate work and avoid synchronization

by await statements. So far, we have not been able to come up with a correct algorithm

without await statements or a repair procedure. An improvement might be to invent a

smart work stealing scheme, in which workers can cooperate instead of waiting.

Finally, we demonstrated that counterexamples in Cndfs become shorter with more

parallelism, even shorter than counterexamples in parallel BFS-basedOtf_Owcty. This

is an interesting and desirable property for a model checking algorithm. It is intriguing

that our parallel DFS based algorithm shows good scalability and short counterexam-

ples, usually attributed to BFS algorithms, while still maintaining the linear-time and

on-the-fly properties expected from a DFS algorithm.
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Improved On-The-Fly Livelock Detection

Alfons Laarman, David Faragó

Abstract
Until recently, the preferred method of livelock detection was via LTL model

checking, which imposes complex constraints on partial-order reduction (por), lim-

iting its performance and parallelization. The introduction of the dfsfifo algorithm

by Faragó et al. showed that livelocks can theoretically be detected faster, simpler,

and with stronger por.

For the first time, we implement dfsfifo and compare it to the LTL approach

by experiments on four established case studies. They show the improvements over

the LTL approach: dfsfifo is up to 3.2 times faster, and it makes por up to 5 times

better than with spin’s ndfs.

Additionally, we propose a parallel version of dfsfifo, which demonstrates the

efficient combination of parallelization and por. We prove parallel dfsfifo cor-

rect and show why it provides stronger guarantees on parallel scalability and por

compared to LTL-based methods. Experimentally, we establish almost ideal linear

parallel scalability and por close to the por for safety checks: easily an order of

magnitude better than for LTL.

About this chapter: The current chapter is based on the paper “Improved on-the-Fly
Livelock Detection”, which was published at NFM 2013 [LF13].

8.1 Introduction

Context. In the automata-theoretic approach to model checking [VW86], the be-

havior of a system-under-verification is modeled, along with a property that it is ex-
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pected to adhere to, in some concise specification language. This model M is then

unfolded to yield a state-space automaton AM (cf. Definition 8.1). All safety prop-
erties, e.g. deadlocks and invariants, can be checked directly on the states in AM as

they represent all configurations ofM. This check can be done during the unfolding,

on-the-fly, saving resources when a property violation is detected early on.

For more complicated properties, like liveness properties [BK08], AM is inter-

preted as an ω-automaton whose language L(AM) represents all infinite executions

of the system. A property ϕ , expressed in linear temporal logic (LTL), is likewise

translated to a Büchi or ω-automaton A¬ϕ representing all undesired infinite execu-

tions. The intersected language L(AM)∩L(A¬ϕ) now consists of all counterexample

traces, and is empty if and only if the system is correct with respect to the property. The

emptiness check is reduced to the graph problem of finding cycles with designated ac-

cepting states in the cross product AM⊗A¬ϕ (cf. Section 8.2). The nested depth-first

search (ndfs) algorithm [Cou+92] solves it in time linear to the size of the product and

on-the-fly as well.

Motivation. The model checking approach is limited by the so-called state-space
explosion problem [BK08], which states that AM is exponential in the components of

the system, andA¬ϕ exponential in the size of ϕ . Luckily, several remedies exist to this

problem: patience, specialization and state-space reduction techniques.

State-space reduction via partial-order reduction (por) prunes AM by avoiding

irrelevant interleavings of local components inM [KP88b; Val91b]: only a sufficient

subset of successors, the ample set, is considered in each state (cf. Section 8.2). For

safety properties, the ample set can be computed locally on each state. For liveness

properties, however, an additional condition, the cycle proviso, is needed to avoid the

so-called ignoring problem [EP10]. por can yield exponential reductions.

Patience also pays off exponentially as Moore’s law stipulates that the number of

transistors available in CPUs and memory doubles every 18 months [Moo65]. Due to

this effect, model checking capabilities have increased from handling a few thousand

states to covering billions of states recently (the current chapter and [BL13a]). While

this trend happily continues to increase memory sizes, it recently stopped benefitting the

sequential performance of CPUs because physical limitations were reached. Instead, the

available parallelism on the chips is rapidly increasing. So, for runtime to benefit from

Moore’s law, we must parallelize our algorithms.

Specialization towards certain subclasses of liveness properties, finally, can also

help to solve them more efficiently. For instance, a limitation to the CTL and the weak
LTL fragments was shown to be efficiently parallelizable [SZB12; BBR09a]. In the
current chapter, we limit the discourse to livelock properties, an important subclass

194



8

8.1 Introduction

(used in about half of the case studies of [Llu]8.1 and a third of [Pel07]) that investigates

starvation, occurring if an infinite run does not make progress infinitely often. The

definition of progress is up to the system designer and could for instance refer to an

increase of a counter or access to a shared resource. The spin model checker allows the

user to specify progress statements inside the specification of the model [Hol11], which

are then represented in the model by the state label ‘progress’ and referenced by the

predefined progress LTL property [HPY96]. Until 1996, spin used a specific livelock

verification algorithm based on the original divergence detection algorithm proposed by

Valmari [Val93] from 1993. Section 6 of [HPY96] states that it was replaced by LTL

model checking due to its incompatibility with por.

Problem. Parallelization of LTL model checking is hard. The current state-of-the-

art reveals that parallel cycle detection algorithms either raise the worst-case complexity

to L2 [BBR09a] or to L ·P [Eva+12], where L is the size of the LTL cross product and

P the number of processors. Moreover, its additional constraints on por severely limit

its reduction capabilities, even if implemented with great care (see models allocation,
cs and p2p in Table 1 in the appendix of [EP10]). Last but not least, these constraints

also limit the parallelization of por [BBR10a].

Wewant to investigate whether better results can be obtained for livelocks, for which

recently an efficient algorithm was proposed by Faragó et al. [FS09]: dfsfifo. In theory,

it has additional advantages over the LTL approach:

1. It uses the progress labels in the model directly without the definition of an LTL

property; avoiding the calculation of a larger cross product.

2. It requires only one pass over the state space, while the ndfs algorithm, typically

used for liveness properties, requires two.

3. It eliminates the need for the expensive cycle proviso with por.

4. It finds the shortest counterexample with respect to progress.

But dfsfifo is yet to be implemented and evaluated experimentally, so its practical per-

formance is unknown. Additionally, a few hypotheses stand unproven:

1. The algorithm’s strategy to delay progress as much as possible, may also be a

good heuristic for finding livelocks early, making it more on-the-fly.

2. Its por performance might be close to that of safety checks, because the cycle

proviso is no longer required [FS09], and the visibility proviso (see Table 8.1) is

also positively influenced by the postponing of progress.

8.1 promela database: http://www.albertolluch.com/research/promelamodels.
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3. The use of progress transitions instead of progress states is possible, semantically

more accurate, and can yield better partial-order reductions.

Furthermore, no parallelization exists for the dfsfifo algorithm.

Contributions. We implemented the dfsfifo algorithm in the LTSmin [BPW10;

LPW11a; BL13a], with both progress states and transitions. For the latter, we extended

theory, algorithms, proofs, models and implementation. We compare the runtime and

por performance to that of LTL approaches using ndfs. For dfsfifo, we also investigate

the effect of using progress transitions instead of states on por.

Additionally, we present a parallel livelock algorithm based on dfsfifo, together with

a proof of correctness. While the algorithm builds on previous efficient parallelizations

of the ndfs algorithm [Eva+12; Laa+11; LP11], we show that it has stronger guarantees

for parallel scalability due to the nature of the underlying dfsfifo algorithm. At the

same time, it retains all the benefits of the original dfsfifo algorithm. This entails the

redundancy of the cycle proviso, hence allowing for parallel por with almost the same

reductions as for safety checks.

Our experiments confirm the theoretical expectations: using dfsfifo on four case

studies, we observed up to 3.2 times faster runtimes thanwith the use of an LTL property

and the ndfs algorithm, even compared to measurements with the spin model checker.

But we also confirm all hypotheses of Faragó et al.: the algorithm is more on-the-fly,

and por performance is closer to that of safety checks than the LTL approach, making

it up to 5 times more effective than por in spin. Our parallel version of the algorithm

can work with por and features the expected linear scalability. Its combination with

por easily outperforms other parallel approaches [BBR10a].

Overview. In Section 8.2, we recapitulate the intricacies of livelock detection via

LTL and via non-progress detection, as well as por. In Section 8.3, we introduce

dfsfifo for progress transitions with greater detail and formality than in [FS09], as

well as its combination with por. Thereafter, in Section 8.4, we provide a parallel

version of dfsfifo with a proof of correctness, implementation considerations, and an

analysis on its scalability. Section 8.5 presents the experimental evaluation, compar-

ing dfsfifo’s (por) performance and scalability against the (parallel) LTL algorithms in

spin [Hol12; HPY96], DiVinE [BBR10a; BBR09a], and LTSmin [BL13a; LPW11a].

We conclude in Section 8.6.
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8.2 Preliminaries

8.2.1 Model Checking of Safety Properties

Explicit-state model checking algorithms construct AM on-the-fly starting from the

initial state s0, and recursively applying the next-state function next-state() to discover

all reachable states RM. This only requires storing states (no transitions). As soon as

a counterexample is discovered, the exploration can terminate early, saving resources.

To reason about these algorithms, it is however easier to consider AM structurally as a

graph.

Definition 8.1 (State-Space Automaton). An automaton is a quintuple
AM = (SM,s0,Σ,TM,L), with SM a finite set of states, s0 ∈ SM an initial state, Σ a
finite set of action labels, TM : SM×Σ→ SM the transition relation, and L : SM →
2AP a state labeling function, over a set of atomic propositions AP.

We also use the recursive application of the transition relation T : s π→ +s′ iff π is
a path in AM from s to s′, or s π→ ∗s′ if possibly s = s′. We treat a path π dually as a
sequence of states and a sequence of actions, depending on the context. We omit the
subscriptM whenever it is clear from the context.

Now, we can define: the reachable states RM = {s ∈ SM | s0 →∗ s}, the function

next-state() : SM → 2Σ, such that next-state(s) = {α ∈ Σ | ∃s′ ∈ SM : (s,α,s′) ∈
TM} and α(s) as the unique next-state for s,α if α ∈ next-state(s), i.e. the state

t with (s,α, t) ∈ TM. Note that a state s ∈ S comprises the variable valuations and

process counters in M. Hence, we can use any proposition over these values as an

atomic proposition representing a state label. For example, we may write progress ≡
Peterson0 =CS to have progress ∈ L(s) iff s represents a state where process instance

0 of Peterson is in its critical section CS. Or we can write error≡ N > 1 to express the

mutual exclusion property, with N the number of processes inCS. These state labels can
then be used to check safety properties using reachability, e.g., an invariant ‘¬error′ to
check mutual exclusion inM.

8.2.2 LTL Model Checking

For an LTL property, the property ϕ is transformed to an ω-automatonA¬ϕ as detailed

in [VW86]. Structurally, the ω-automaton extends a normal automaton (Definition 8.1)

with dedicated accepting states (see Definition 8.2). Semantically, these accepting states

mark those cycles that are part of the ω-regular language L(A¬ϕ) as defined in Defini-

tion 8.3.
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To check correctness ofM with respect to a property ϕ , the cross product of A¬ϕ
with the state-space automaton AM is calculated: AM×ϕ = AM⊗A¬ϕ . The states

of SM×ϕ are formed by tuples (s,s′) with s ∈ SM and s′ ∈ S¬ϕ , with (s,s′) ∈ F iff

s′ ∈ F¬ϕ . Hence, the number of possible states |SM×ϕ | equals |SM| · |S¬ϕ |, whereas

the number of reachable states |RM×ϕ | may be smaller. The transitions in TM×ϕ are

formed by synchronizing the transition labels of A¬ϕ with the state labels in AM. For

an exact definition of TM×ϕ , we refer to [BK08].

Definition 8.2 (Accepting states). The set of accepting states F corresponds to those
states with a label accept ∈ AP: F = {s ∈ S | accept ∈ L(s)}.

Definition 8.3 (Accepting run). A lasso-formed path s0
v→ ∗s w→ +s in A, with s ∈ F ,

constitutes an accepting run, part of the language of A: vwω ∈ L(A).

As explained in Section 8.1, the whole procedure of finding counterexamples to ϕ
forM is now reduced to the graph problem of finding accepting runs in AM×ϕ . This
can be solved by the nested depth-first search (ndfs) algorithm, which does at most

two explorations of all statesRM×ϕ . SinceAM×ϕ can be constructed on-the-fly, ndfs

saves resources when a counterexample is found early on.

8.2.3 Livelock Detection

Livelocks form a specific, but important subset of the liveness properties and can be

expressed as the progress LTL property: �♦progress, which states that on each infinite

run, progress needs to be encountered infinitely often. As the LTL approach synchro-

nizes the state labels of AM (see Definition 8.3), it requires that progress is defined on

states as in Definition 8.4.

Definition 8.4 (Progress states). The set of progress states SP corresponds to those
states with a state label progress ∈ AP: SP = {s ∈ S | progress ∈ L(s)}.

Definition 8.5 (Non-progress cycle). A reachable cycle π in AM is a non-progress
cycle (NPcycle) iff it contains no progress P .

We define NP as a set of states: NP = {s ∈ SM | ∃π : s π→ +s∧π ∩P = /0}.

Theorem 8.1. Under P = SP , AM contains a NPcycle iff the cross product with the
progress property AM×�♦progress contains an accepting cycle.

Livelocks can however also be detected directly on AM if we consider for a mo-

ment that a counterexample to a livelock is formed by an infinite run that lacks progress

P , with P = SP . By proving absence of such non-progress cycles (Definition 8.5),
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we do essentially the same as via the progress LTL property, as Theorem 8.1 shows

(see [HPY96] for the proof and details). This insight led to the proposal of dedi-

cates algorithms in [HPY96; FS09] (cf. dfsfifo in Section 8.3), requiring |RM| time

units to prove livelock freedom. The automaton A¬�♦progress consists of exactly two

states [HPY96], hence |RM| · 2 ≤ |RM×ϕ |. This, combined with the revisits of the

ndfs algorithm, makes the LTL approach up to 4 times as costly as dfsfifo.

8.2.4 Partial-Order Reduction

To achieve the reduction as discussed in the introduction, por replaces the next-state()

with an ample function, which computes a sufficient subset of next-state() to explore

only relevant interleavings w.r.t the property [KP88b].

For deadlock detection, ample only needs to fulfill the emptiness proviso and depen-
dency proviso (Table 8.1). The provisos can be deduced locally from s, next-state(s),
and dependency relations D⊆ ΣM×ΣM that can be statically overestimated fromM,

e.g. (α,β )∈D if α writes to those variables that β uses as guard [Pat11]. For a precise

definition of D consult [KP88b; Val91b].

In general, the model checking of an LTL property (or invariant) ϕ requires two ad-

ditional provisos to hold: the visibility proviso ensures that traces included in A¬ϕ are

not pruned fromAM, the cycle proviso prevents the so-called ignoring problem [EP10].

The strong variant C3 (stronger than A4 in [BK08, Sec. 8.2.2]) is already hard to en-

force, so often an even stronger condition, e.g. C3’, is implemented. While visibil-

ity can still be checked locally, the cycle proviso is a global property, that compli-

cates parallelization [BBR10a]. Moreover, the ndfs algorithm revisits states, which

might cause different ample sets for the same states, because the procedure is non-

deterministic [HPY96]. To avoid any resulting redundant explorations, additional book-

keeping is needed to ensure a deterministic ample set.

Table 8.1: por provisos for the LTL model checking ofM with a property ϕ
C0 emptiness ample(s) = /0⇔ next-state(s) = /0
C1 dependency No action α �∈ ample(s) that is dependent on another β ∈ ample(s), i.e.

(α,β ) ∈ D, can be executed in the original AM after reaching the state s
and before some action in ample(s) is executed.

C2 visibility ample(s) �= next-state(s) =⇒ ∀α ∈ ample(s) : α is invisible, which

means that α does not change a state label referred to by ϕ .

C3 cycle For a cycle π in AM, ∃s ∈ π : next-state(s) = ample(s).
C3’ cycle (impl.) ample(s) �= next-state(s)⇒ �α ∈ ample(s) s.t. α(s) is on the dfs stack.
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8.3 Progress Transitions and dfsfifo for Non-Progress

In the current section, we refine the definition of progress to include transitions. We

then present a new version of dfsfifo, an efficient algorithm for non-progress detec-

tion by Faragó et al. [FS09], which supports this broader definition. We also discuss

implementation considerations and the combination with por.

s1

s2

s3

α

Progress transitions. As argued in [FS09], progress is more naturally

defined on transitions (Definition 8.6) than on states. After all, the action

itself, e.g. the increase of a counter in M, constitutes the actual progress.

This becomes clear considering the difference in semantics between progress

transitions and progress states for livelock detection: The figure on the right

shows an automaton with SP = {s1} and T P = {(s2,α,s1)}. Thus the cycle

s2 ↔ s3 exhibits only fake progress when progress states are used (P = SP ):

the action performing the progress, α , is never taken. With progress transitions (P =
T P ), only s2 ↔ s3 can be detected as NPcycle. While fake progress cycles could be

hidden by enforcing strong (A-)fairness [BK08], spin’s weak (A-)fairness [Hol11] is

insufficient [FS09]. But enforcing any kind of fairness is costly [BK08].

Definition 8.6 (Progress transitions/actions). We define progress transitions as: T P =
{(s,α,s′) ∈ T | α ∈ ΣP}, with ΣP ⊆ Σ a set of progress actions.

Theorem 8.2. dfsfifo ensures: R∩NP �= /0⇔ dfs-fifo(s0) = report NPcycle

Algorithm 8.1 dfsfifo for progress transitions and progress states

1: procedure dfs-fifo(s0)

2: F := {s0} � Frontier queue

3: V := /0 � Visited set

4: S := /0 � Stack

5: repeat
6: s := some s ∈ F
7: if s �∈V then
8: dfs(s)
9: F := F \{s}

10: until F = /0
11: report progress ensured

12: procedure dfs(s)
13: S := S∪{s}
14: for all t := α(s) s.t. α ∈ next-state(s) do
15: if t ∈ S∧α, t �∈ P then
16: report NPcycle
17: if t �∈V then
18: if α, t �∈ P then
19: dfs(t)
20: else if t �∈ F then
21: F := F ∪{t}
22: V := V ∪{s}
23: S := S\{s}
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8.3 Progress Transitions and dfsfifo for Non-Progress

dfsfifo. Algorithm 8.1 shows an adaptation of dfsfifo that supports the definition

of progress on both states and transitions (actions), so P = SP ∪ΣP . Intuitively, the

algorithm works by delaying progress as long as possible using a bfs and searching for

NPcycles in between progress using a dfs. The correctness of this adapted algorithm

follows from Theorem 8.2, which is implied by Theorem 8.4 with P = 1.
The FIFO queue F holds progress states, or immediate successors of progress tran-

sitions (which we will collectively refer to as after-progress states), with the exception

of the initial state s0. The outer dfs-fifo loop handles all after-progress states in breadth-

first order (similar to ‘Frontier’ in [LT04]). The dfs procedure, starting from a state in F
then explores states up to progress, storing visited states in the setV (Line 22), and after-

progress states in F (Line 21). The stack of this search is maintained in a set S (Line 13

and Line 23) to detect cycles at Line 16. All states t ∈ S and their connecting transi-

tions are non-progress by Line 18, except for possibly the starting state from F . The

cycle-closing transition s α→ t might also be a progress transition. Therefore, Line 15

performs an additional check α, t �∈ P . Furthermore, an after-progress state s �∈ SP

added to F , might be reached later via a non-progress path and added to V . Hence, we

discard visited states in dfs-fifo at Line 7.

Implementation. An efficient implementation of Algorithm 8.1 stores F and V in

one hash table (using a bit to distinguish the two) for fast inclusion checks, while F
is also maintained as a queue Fq. S can be stored in a separate hash table as |S| �
|R|. Counterexamples can be reconstructed if for each state a pointer to one of its

predecessors is stored [LPW10a]. Faragó et al. showed two alternatives [FS09], which

are also compatible with lossy hashing [BHR13].

Combination with por. While the four-fold performance increase of dfsfifo com-

pared to LTL (Section 8.2) is a modest gain, the algorithm provides even more poten-

tial as it relaxes conditions on por, which, after all, might yield exponential gains. In

contrast to the LTL method using ndfs, dfsfifo does not revisit states, simplifying the

ample implementation. Moreover, Lemma 8.1 shows that dfsfifo does not require the

cycle proviso using a visibility proviso from Table 8.2.

Lemma 8.1. Under P = SP , C2S implies C3. Under P = ΣP , C2T implies C3.

Table 8.2: por visibility provisos for dfsfifo

C2S ample(s) �= next-state(s) =⇒ s �∈ SP

C2T ample(s) �= next-state(s) =⇒ ∀α ∈ ample(s) : α �∈ ΣP
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Proof. If dfsfifo with por traverses a cycle C which makes progress, i.e. ∃s ∈C : s ∈
SP ∨ample(s)∩C∩ΣP �= /0, C2S / C2T guarantees full expansion of s, thus fulfilling
C3. If dfsfifo traverses a NPcycle, it terminates at Line 16.

Theorem 8.3. Theorem 8.2 still holds for dfsfifo with C0, C1, C2S / C2T (Theorem 2
from [FS09]).

Proof. Lemma 8.1 shows that if the C0, C1 and C2S / C2T hold, so does C3. Fur-

thermore, C0, C1 and C2S / C2T are independent of the path leading to s, so ample(s)
with dfsfifo retains stutter equivalence related to progress [HP94, p.6]. Therefore, the

reduced state space has a NPcycle iff the original has one.

8.4 A Parallel Livelock Algorithm based on dfsfifo

Algorithm 8.2 presents a parallel version of dfsfifo. The algorithm does not differ much

from Algorithm 8.1: the dfs procedure remains largely the same, and only dfs-fifo is

split into parallel fifo procedures handling states from the FIFO queue F concurrently.

The technique to parallelize the dfs(s, i) calls is based on successful multi-core ndfs

algorithms presented in Part III. Each worker thread i∈ 1..P uses a local stack Si, while

V and F are shared (below, we show how an efficient implementation can partially

localize F). The stacks may overlap (see Line 2 and Line 9), but eventually diverge

because we use a randomized next-state function: next-statei() (see Line 15).

Algorithm 8.2 Parallel dfsfifo (pdfsfifo)

1: procedure dfs-fifo(s0,P)
2: F := {s0} � Frontier queue

3: V := /0 � Visited set

4: Si := /0 for all i ∈ 1..P � Stacks

5: fifo(1) ‖ . . . ‖ fifo(P)
6: report progress ensured
7: procedure fifo(i)
8: while F �= /0 do
9: s := some s ∈ F

10: if s �∈V then
11: dfs(s, i)
12: F := F \{s}

13: procedure dfs(s, i)
14: Si := Si∪{s}
15: for all t := α(s) s.t. α ∈ next-statei(s) do
16: if t ∈ Si∧α, t �∈ P then
17: report NPcycle
18: if t �∈V then
19: if α, t �∈ P then
20: dfs(t, i)
21: else if t �∈ F then
22: F := F ∪{t}
23: V := V ∪{s}
24: Si := Si \{s}
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8.4 A Parallel Livelock Algorithm based on dfsfifo

Proof of correctness. Theorem 8.4 proves correctness of Algorithm 8.2. We show

that the propositions below hold after initialization of Algorithm 8.2, and inductively

that they are maintained by execution of each statement in the algorithm, considering

only the lines that influence the proposition. Rather than restricting progress to either

transitions or states, we prove the algorithm correct under P = SP ∪T P . Hence, the

dual interpretation of paths (see Definition 8.1) is used now and then. Note that a call

to report terminates the algorithm and the callee does not return.

Lemma 8.2. Upon return of dfs(s, i), s is visited: s ∈V .

Proof. Line 23 of dfs(s, i) adds s to V .

Lemma 8.3. Invariantly, all direct successors of a visited state v are visited or in F:
∀v ∈V,α ∈ next-state(v) : α(v) ∈V ∪F .

Proof. After initialization, the invariant holds trivially, as V is empty. V is only modi-

fied at Line 23, where s is added after all its immediate successors t are considered at

Line 16–22: If t ∈ V ∪F , we are done. Otherwise, dfs(s, i) terminates at Line 17 or t
is added to V at Line 20 (Lemma 8.2) or to F at Line 22. States are removed from F at

Line 12, but only after being added to V at Line 11 (Lemma 8.2).

Corollary 8.1. Lemma 8.3 holds also for a state v �∈V in dfs(v, i) just before Line 23.

Lemma 8.4. Invariantly, all paths from a visited state v to a state f ∈ F \V contain
progress: ∀π,v ∈V, f ∈ F \V : v π→ f =⇒ P∩π �= /0.

Proof. After initialization of the sets V and F , the lemma is trivially true. These sets

are modified at Line 12, Line 22, and Line 23 (omitting the trivial case):

Line 22 Let i be the first worker thread to add a state t to F in dfs(s, i) at Line 22. If

some other worker j adds t toV , the invariant holds trivially, so we consider t �∈V .

By Line 19, all paths v →∗ s → t contain progress. By contradiction, we show

that all other paths that do not contain s also contain progress: Assume that there

is a v ∈V such that v π→ +t and P∩π = /0. By induction on the length of the path

π and Lemma 8.3, we obtain either t ∈V , a contradiction, t ∈ F \V , contradicting

the assumption that worker i is first, or another f �= t with f ∈ F \V , for which

the induction hypothesis holds.

Line 23 Assume towards a contradiction that i is the first worker thread to add a state s to
V at Line 23 of dfs(s, i). So, we have s �∈V before Line 23. By Corollary 8.1, for

all immediate successors t of s, i.e. for all t = α(s) such that α ∈ next-state(s),
we have t ∈V or t ∈ F \V . In the first case, since s �= t, the induction hypothesis
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holds for t. In the second case, if t = s, the invariant trivially holds after Line 23,

and if t �= s, we have α, t ∈ P , since otherwise t ∈ V by Line 19 and Line 20

(Lemma 8.2). Thus the invariant holds for all paths s→+ f .

Remark 8.1. Note that a state s∈ F might at any time be also added to V by some other
worker thread in two cases: (1) s �∈ SP , i.e. it was reached via a progress transition
(see Line 19), but is reachable via some other non-progress path, or (2) another worker
thread j takes s from F at Line 9 and completes dfs(s, j).

Lemma 8.5. Invariantly, visited states do not lie on NPcycles: V ∩NP = /0.

Proof. Initially, V = /0 and the lemma holds trivially. Let i be the first worker thread

to add s to V in dfs(s, i) at Line 23. So we have s ∈ V just after Line 23 of dfs(s, i).
Assume towards a contradiction that s∈NP . Then there is a NPcycle s→ t →+ s with

s �= t since otherwise Line 17 would have reported a NPcycle. Now by Lemma 8.3,

t ∈ V ∪F . By the induction hypothesis, t �∈ V , so t ∈ F \V . Lemma 8.4 contradicts

s→ t making no progress.

Lemma 8.6. Upon return of dfs-fifo, all reachable states are visited: R⊆V .

Proof. After dfs-fifo(s0,P), F = /0 by Line 8. By Line 2, Line 11 and Lemma 8.2,

s0 ∈V . So by Lemma 8.3,R⊆V .

Lemma 8.7. dfs-fifo terminates and reports an NPcycle or progress ensured.

Proof. Upon return of a call dfs(s, i) for some s ∈ F at Line 11, s has been added to V
(Lemma 8.2), removed from F at Line 12, and will never be added to F again. Hence

the set V grows monotonically, but is bounded, and eventually F = /0. Thus eventually
all dfs calls terminate, and dfs-fifo(s0,P) terminates too.

Lemma 8.8. Invariantly, the states in Si form a path without progress except for the
first state: Si = /0 or Si = π ∩S for some s π→ ∗s′ and π ∩P ⊆ {s1}.
Proof. By induction over the recursive dfs(s, i) calls, we obtain π . At Line 20, we have

α, t �∈ P , but at Line 11 we may have s ∈ SP (by Line 19 and Line 22).

Theorem 8.4. pdfsfifo ensures: R∩NP �= /0⇔ dfs-fifo(s0,P) = report NPcycle

Proof. We split the equivalence into two cases:

⇐: We have a cycle: s α→ t π→ s s.t. ({α}∪π)∩P = /0 by Line 16 and Lemma 8.8.

⇒: Assume that dfs-fifo(s0,P) �= NPcycle∧R∩NP �= /0. However, at Line 6,

R⊆V by Lemma 8.6 and Lemma 8.7, henceR∩NP = /0 by Lemma 8.5.
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8.4 A Parallel Livelock Algorithm based on dfsfifo

Implementation. For a scaling implementation, the hash table storing F andV (see

Section 8.3) is maintained in shared memory using a lockless design (see Part II). Stor-

ing also the queue Fq in shared memory, however, would seriously impede scalability

due to contention (recall that F is maintained as both hash table and queue Fq). Our

more efficient implementation splits Fq into P local queues Fq
i , such that F ⊆⋃

i∈1..P Fq
i

(Remark 8.1 explains the ⊆).

To implement load balancing, one could relax the constraint at Line 21 to s �∈ Fq,

so that after-progress states end up on multiple local queues. Provided that AM is

connected enough, which it usually is in model checking, this would provide good work

distribution already. On the other hand, the total size of all queues Fq
i would grow

proportional to P, wasting a lot of memory on many cores. Therefore, we instead opted

to add explicit load balancing via work stealing. Algorithm 8.3 illustrates this. Iff the

local queue Fq
i is empty, the steal function grabs states from another random queue Fq

j
and adds them to Fq

i , returning false iff it detects termination. Inspection of Lemma 8.3

and Lemma 8.7 shows that removing s from F is not necessary.

The proofs show that correctness of pdfsfifo does not require F to be in strict FIFO

order (as Line 9 does not enforce any order). To optimize for scalability, we enforce

a strict bfs order via synchronizations8.2 between the bfs levels only optionally8.3. As

trade-off, counterexamples are no longer guaranteed to be the shortest with respect to

progress, and the size of F may increase (see Remark 8.1).

Algorithm 8.3 An implementation of pdfsfifo with local queues and load balancing

1: procedure fifo(i)
2: Fq

i := {s0}
3: while steal(Fq

i ) do
4: Fq

i := Fq
i \{s}

5: if s �∈V then
6: dfs(s, i)

Analysis of scalability. Experiments with multi-core ndfs (see Chapter 7) demon-

strated that these parallelization techniques make the state-of-the-art for LTL model

checking. Because of the bfs nature of dfsfifo, we can expect even better speedups.

Moreover, in Chapter 5, additional synchronization was needed to prevent workers from

early backtracking; a situation in which two workers exclude a third from part of the

state space. Figure 8.1 illustrates this: Worker 1 can visit s, v, t and u, and then halt.

8.2 Parallel bfs algorithms, with and without synchronization, are described in Chapter 9.
8.3 The command line option --strict turns on strict pdfsfifo in LTSmin.
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Worker 2 can visit s, u, t and v and backtrack over v. If now Worker 1 resumes and

backtracks over u, both v and u are in V . A third worker will be excluded from visiting

t, which might lead to a large part of the state space. Lemma 8.3 shows that this is im-

possible for pdfsfifo as the successors of visited states are either visited or in F (treated

in efficient parallel bfs), but never do successors lie solely on the stack Si (as in cndfs).

s

tu v

Figure 8.1: Example for early backtracking

8.5 Experimental Evaluation

In the current section, we benchmark the performance of dfsfifo, and its combination

with por, using both progress states and progress transitions. We compare the results

against the LTL approach with progress property using, inter alia, spin [Hol11]. We

also investigate the scalability of pdfsfifo, and compare the results against the multi-core

ndfs algorithm cndfs, the state-of-the-art for parallel LTL [BL13a] (see also Chapter 7

and Chapter 11), and the Piggyback algorithm in spin (PB). Finally, we investigate the

combination of pdfsfifo and por, and compare the results with owcty [BBR09a], which

uses a topological sort to implement parallel LTL and por [BBR10a]. Since currently

there is no way to combine por with e.g. cndfs from Chapter 7, we cannot experiment

with this aspect on an Mc-ndfs algorithm.

We implemented pdfsfifo (Algorithm 8.2 with work stealing and both strict8.3/non-
strict BFS order) in LTSmin [LPW11a; BPW10] 2.0.8.4 LTSmin has a frontend for

promela, called SpinS [Hol11], and one for the DVE language, allowing fair compar-

ison [BPW10; LPW11a; BL13a] against spin 6.2.3 and DiVinE 2.5.2 [BBR09a]. To

ensure similar state counts, we turned off control-flow optimizations in SpinS/spin, be-

cause spin has a more powerful optimizer, which can be, but is not yet implemented

in SpinS. Only the GIOP model (described below) still yields a larger state count in

SpinS/LTSmin than in spin. We still include it as it nicely features the benefits of

dfsfifo over ndfs.

We benchmarked on a 48-core machine (a four-way AMD Opteron 6168) with

128GB of main memory, and considered 4 publicly available8.1 promela models with

8.4 LTSmin is open source, available at: http://fmt.cs.utwente.nl/tools/ltsmin.
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8.5 Experimental Evaluation

progress labels, and adapted SpinS to interpret the labels as either progress states,

as in spin, or progress transitions. leadert is the efficient leader election protocol

Atiming [Far07]. The Group Address Registration Protocol (GARP) is a datalink-level

multicast protocol for a bridged LAN. General Inter-Orb Protocol (GIOP) models ser-

vice oriented architectures. Themodel i-Protocol represents the gnu implementation of

this protocol. We use a different leader election protocol (leaderDKR) from [DKR82] in

DVE format [Pel07] for comparison against DiVinE. For all these models, the livelock

property holds under P = SP and P = T P .8.5

8.5.1 Performance

In theory, dfsfifo can be up to four times as fast as using the progress LTL formula and

ndfs. To verify this, we compare dfsfifo to ndfs in LTSmin and spin. In LTSmin, we

used the command line: prom2lts-mc --state=tree -s28 --strategy=[dfsfifo/ndfs] [model],
which replaces the shared table (for F and V ) by a tree table for state compression (see

Chapter 3). In spin, we used compression as well (collapse [Hol11]): cc -O2 -DNP -
DNOFAIR -DNOREDUCE -DNOBOUNDCHECK -DCOLLAPSE -o pan pan.c, and pan -m100000
-l -w28, avoiding table resizes and overhead. In both tools, we also ran dfs reachabil-

ity with similar commands. We write oom for runs that overflow the main memory.

Table 8.3 shows the results: As expected, |Rltl| is 1.5 to 2 times larger than |R|
for both spin and LTSmin; GIOP fits in memory for dfsfifo but the LTL cross product

overflows (ndfs). Tndfs is about 1.5 to 4 times larger than Tdfs for spin, 2 to 5 times

larger for LTSmin (cf. Section 8.2). Tdfsfifo is 1.5 to 2 times larger than Tdfs, likely

caused by its set inclusion tests on S and F . Tndfs is 1.6 to 3.2 times larger than Tdfsfifo .

Table 8.3: Runtimes (sec) of (sequential) dfs, dfsfifo, ndfs in spin and LTSmin

LTSmin spin

|R| |Rltl| Tdfs Tdfsfifo Tndfs |R| |Rltl| Tdfs Tndfs

leadert 4.5e7 198% 153.7 233.2 753.6 4.5e7 198% 304.0 1,390.0

garp 1.2e8 150% 377.1 591.2 969.2 1.2e8 146% 1,370.0 2,050.0

giop 2.7e9 oom 21,301.4 43,154.3 oom 8.4e7 181% 1,780.0 4,830.0

i-prot 1.4e7 140% 28.4 41.4 70.6 1.4e7 145% 63.3 103.0

8.5Models that we modified are available at http://doiop.com/leader4DFSFIFO.
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8.5.2 Parallel Scalability

To compare the parallel algorithms in LTSmin, we use the options --threads=P
--strategy=[dfsfifo/cndfs], where P is the number of worker threads. In spin, we use -
DBFS_PAR, which also turns on lossy state hashing [Hol12], and run the pan binary with

an option -uP. This turns on a parallel, linear-time, but incomplete, cycle detection al-

gorithm called Piggyback (PB) [Hol12]. It might also be unsound due its combination

with lossy hashing [BHR13]. Figure 8.2 shows the obtained speedups: As expected,

reachability (see Part II) and pdfsfifo scale almost ideally, while cndfs exhibits sub-

linear scalability, even though it is the fastest parallel LTL solution (see Chapter 7).

PB also scales sublinearly. Since LTSmin sequentially competes with spin (Table 8.4,

except for GIOP), scalability can be compared.

8.5.3 Parallel Memory Usage

We expected few state duplication on local queues Fq
i (see Remark 8.1). To verify this,

we measured the total size of all local queues and hash tables using counters for strict8.3

and non-strict pdfsfifo, and cndfs. Table 8.4 shows QP = ∑i∈1..P |Fq
i |+ |Si| averaged

over 5 runs: Non-strict pdfsfifo shows little difference from the strict variant, and Q48
is at most 20% larger than Q1 for all pdfsfifo. Due to the randomness of the parallel

runs, we even have Q48 < Q1 in many cases. Revisits occurred at most 2.6% using 48

cores. In the case of cndfs, the combined stacks typically grow because of the larger

dfs searches. Accordingly, we found that pdfsfifo’s total memory use with 48 cores was

between 87% and 125% compared to sequential dfs. In the worst case, pdfsfifo (with

tree compression) used 52% of the memory use of PB (collapse compression and lossy

hashing) [BL13a] – GIOP excluded as its state counts differ.

Table 8.4: Runtimes (sec) / queue sizes of the parallel algorithms: dfs, pdfsfifo and

cndfs in LTSmin, and PB in spin

dfs pdfsfifo cndfs PB pdfsstrict
fifo pdfsnon-strict

fifo cndfs

T1 T48 T1 T48 T1 T48 T1 Tmin Q1 Q48 Q1 Q48 Q1 Q48

leadert 153.7 3.8 233.2 5.7 925.7 51.4 228.0 25.9 1.0e6 1.2e6 1.2e6 1.4e6 2.7e6 3.6e7

garp 377.1 8.8 591.2 13.1 1061.0 58.6 1180.0 70.9 1.9e7 2.0e7 1.9e7 5.3e6 5.5e6 6.5e7

giop 2.1e4 463.3 4.3e4 9.7e2 oom oom 1.2e3 57.8 1.1e9 8.4e8 1.1e9 8.4e8 oom oom

i-prot 28.4 0.7 41.4 1.1 75.9 3.7 86.2 17.7 1.0e6 1.1e6 1.0e6 1.3e6 8.3e5 1.0e7
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Figure 8.2: Speedups of dfs, pdfsfifo and cndfs in LTSmin, and Piggyback in spin
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8.5.4 Partial-Order Reduction Performance

LTSmin’s por implementation (option --por) is based on stubborn sets [Val91b], de-

scribed in [Pat11], and is competitive to spin’s [BL13a]. We extended it with the alter-

native provisos for dfsfifo: C2S and C2T . Table 8.5 shows the relative number of states,

using the different algorithms in both tools: For all models, both LTSmin and spin are

able to obtain reductions of multiple orders of magnitude using their dfs algorithms.

We also observe that much of this benefit disappears when using the ndfs LTL algo-

rithm due to the cycle proviso, although spin often performs much better than LTSmin

in this respect. Also dfsfifo with progress states (column dfsSfifo), performs poorly:

apparently, the C2S proviso is so restrictive that many states are fully expanded. But

dfsfifo with progress transitions (column dfsTfifo) retains dfs’s impressive por with at

most a factor 2 difference.

Table 8.5: por (%) for dfsTfifo, dfs
S
fifo, dfs and ndfs in spin and LTSmin

LTSmin spin

dfs dfsTfifo dfsSfifo ndfs dfs ndfsspin

leadert 0.32% 0.49% 99.99% 99.99% 0.03% 1.15%

garp 1.90% 2.18% 4.29% 16.92% 10.56% 12.73%

giop 1.86% 1.86% 3.77% oom 1.60% 2.42%

i-prot 16.14% 31.83% 100.00% 100.00% 24.01% 41.37%

8.5.5 Scalability of Parallelism and Partial-Order Reduction

We created multiple instances of the leaderDKR models by varying the number of nodes

N and expressed the progress LTL property in DiVinE. We start DiVinE’s state-of-the-

art parallel LTL-por algorithm, owcty, by: divine owcty [model] -wP -i30 -p. With the

options described above, we turned on por in LTSmin and ran pdfsfifo, and cndfs, for

comparison. We limited each run to half an hour (—30’ indicates a timeout). Piggyback

reported contradictory memory usage and far fewer states (e.g. < 1%) compared to

dfs with por, although it must meet more provisos. Thus we did not compare against

Piggyback and suspect a bug.

Table 8.6 shows that pdfsfifo and por complement each other rather well: Without

por (left half of the table) the almost ideal speedup (U = T1
T48

= 40.8) allows to explore

one model more: N ≤ 10 instead of only N = 9. When enabling por (right half of the

table), we see again multiple orders of magnitude reductions, while parallel scalability
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Table 8.6: por and speedups for leaderDKR using pdfsfifo, cndfs and owcty

N Alg. |R| |T | T1 T48 U |Rpor| |T por| T por
1 T por

48 Upor

9 cndfs 3.6e7 2.3e8 502.6 12.0 41.8 27.9% 0.1% 211.8 n/a n/a

9 pdfsfifo 3.6e7 2.3e8 583.6 14.3 40.8 1.5% 0.0% 12.9 3.6 3.5

9 owcty 3.6e7 2.3e8 498.7 51.9 9.6 12.6% 0.0% 578.4 35.7 16.2

10 cndfs 2.4e8 1.7e9 —30’ 90.7 —30’ 19.3% 5.4% 1102.7 n/a n/a

10 pdfsfifo 2.4e8 1.7e9 —30’ 109.3 —30’ 0.7% 0.1% 35.0 2.5 14.0

10 owcty 2.4e8 1.7e9 —30’ 663.1 —30’ 8.7% 2.2% —30’ 156.3 —30’
11 pdfsfifo —30’ —30’ —30’ —30’ —30’ 5.1e6 7.1e6 109.8 5.3 20.7

11 owcty —30’ —30’ —30’ —30’ —30’ 9.3e7 1.7e8 —30’ 1036.5 —30’
12 pdfsfifo —30’ —30’ —30’ —30’ —30’ 1.6e7 2.2e7 369.1 11.2 33.0

13 pdfsfifo —30’ —30’ —30’ —30’ —30’ 6.6e7 9.2e7 1640.5 38.1 43.0

14 pdfsfifo —30’ —30’ —30’ —30’ —30’ 2.0e8 2.9e8 —30’ 120.3 —30’
15 pdfsfifo —30’ —30’ —30’ —30’ —30’ 8.4e8 1.2e9 —30’ 527.5 —30’

reduces to U = 3.5 for N = 9, because of the small size of the reduced state space

(|Rpor|). When increasing the model size to N = 13 the speedup grows again to an

almost ideal level (U = 43). With por, the parallelism allows us to explore two more

models within half an hour, i.e., N ≤ 15. While owcty and ndfs also show this effect,

it is less pronounced due to their cycle proviso, allowing N ≤ 11 for owcty and N ≤ 9
for ndfs.

As livelocks are disjoint from the class of weak LTL properties, owcty could become

non-linear [BBR09a], but it required only one iteration for leaderDKR.

As pdfsfifo revisits states, the random next-state function could theoretically weaken

por (as for ndfs, see Section 8.2). But for all our 5 models, this did not occur.

8.5.6 On-The-Fly Performance

We created a leader election protocol with early (shallow) and another with late (deep)
injected NPcycles (see 8.5, [Far07]). Table 8.7 shows the average runtime in seconds (T )

and counterexample length (C) over five runs. Since pdfsfifo finds shortest counterexamples8.3,

it outperforms cndfs for the shallow version and pays a penalty for the deep version.

Both algorithms benefit greatly from massive parallelism (see also [LP11]).
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Table 8.7: Runtimes and counterexample lengths for cndfs and pdfsfifo on synthetic

models containing livelocks at deep and shallow levels in the state space

cndfs pdfsTfifo cndfs pdfsTfifo
T1 T48 T1 T48 C1 C48 C1 C48

shallow —30’ 7 12 4 —30’ 16 16 16

deep 16
(
once

—30’

)
2 —30’ 451 577 499 —30’ 51

8.6 Conclusions

We showed, in theory and in practice, that model checking livelocks, an important sub-

set of liveness properties, can be made more efficient by specializing on it. For our

pdfsfifo implementation with progress transitions, por becomes significantly stronger

(cf. Table 8.5), parallelization has linear speedup (cf. Figure 8.2), and both can be

combined efficiently (cf. Table 8.6).

Our results apply to a broader set of livelock properties that can be expressed more

directly using testing automata [Val93]. See [HPV02; Han07] for more extensive dis-

cussion and comparison to Büchi automata. Similarly, [LT04] presents a tested frame-

work more similar to the original from [Val93], where non-progress is defined on ac-

tions, like the progress transitions that we employ. These papers all present algorithms

that are equal to Algorithm 8.1, modulo the different contexts (we define progress

states/transitions, whereas they define livelock-monitor states within the tester frame-

work that ‘listen’ to divergent traces where these are not to be allowed).
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Part IV

Multi-Core Model Checking
for Timed Systems





Introduction

The parallel model checking procedures developed in the previous 2 parts are still lim-

ited to explicit-state systems. The current part extends these methods for the analysis of

timed systems.

Systemswith continuous time behavior can bemodeled using timed automata [Alu99],

timed Petri nets [Ram74] and timed process calculi [BB91]. The transfinite nature of

the continuous time variables, or clocks, makes explicit-state model checking infeasible,

except for when an approximating discretization step is applied beforehand [CHR91;

GRU08; CVH04; She+10; BD98b; BD98a]. A complete approach can however be

achieved by symbolically abstracting clock valuations as linear-(in)equality constraints.
To this end, region-based [AD94] and zone-based [Dil89] abstractions have been pro-

posed. Based on these finite abstractions, extensive tool support has been developed

over the past decade, of which the state-of-the-art for timed automata is arguably up-

paal [LPY97; BDL04].

However, existing solutions still exhibit shortcomings of both theoretical and prac-

tical nature. First of all, while uppaal has been parallelized for distributed systems

almost a decade ago [Beh05; BHV00], it is unclear whether, or even unlikely that, it

scales on modern multi-core computers. Unclear because the distributed version of

uppaal is unavailable, and unlikely because modern multi-core processors nowadays

have steeper memory hierarchies, cf. Section 1.6.

Furthermore, extensive support for liveness properties is not available for timed

automata. While some tools support the full CTL or LTL, their time abstraction is still

limited. The coarsest abstraction methods, combine finite zone-based abstractions with

aggressive extrapolation [Beh+06], and on top of that use the partial-order induced by

the abstraction to prune parts of the state space during the search. The latter is called

subsumption or inclusion abstraction and does not preserve Büchi emptiness [Tri09].

In fact, it is an open theoretical problem whether the checking of liveness properties can
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benefit from the coarsest subsumption abstraction:

“It would also be interesting to studywhether other, coarser, zone-based

abstractions, such as the inclusion abstraction proposed in [DT98] or the

abstractions proposed in [Beh+06], can be used to check timed Büchi au-

tomata emptiness.”

[Tri09]

To extend the multi-core reachability methods from Part II for timed automata, the

symbolic time abstractions, which are represented algorithmically as difference bound
matrices (DBMs) [Ben02], need to be stored together with the visited (explicit) states.

Because there is a many to one relation between the DBMs and the explicit states, the

hash table for the latter should be extended to a multimap.
Chapter 9 explains howwe implement the timed automata for the language-independent

model checker LTSmin. To this end, the opaal model checker [Dal+11] is used as a

frontend, which generates a library from a timed automata model that can be loaded by

LTSmin. The library implements the next-state generator for states that include a DBM.

Furthermore, a design is proposed for a concurrent multimap to store the explicit

and symbolic states, together with a parallel reachability algorithm that implements sub-

sumption abstraction. Mutual exclusion on themultimap is guaranteed by a fine-grained

locking mechanism that allows complex access patterns, while still providing enough

parallelism. We show that the algorithm is complete and does not revisit states, but we

also propose a lockless algorithms that allows for more parallelism, while dropping the

latter guarantee.

The parallel algorithms and data structure were implemented in LTSmin. Exper-

iments show that reachability scales reasonably and the non-blocking version almost

linearly without revisiting significantly many states. Because the flexible search-order

property of the reachability algorithm from Chapter 2 was preserved, the influence of

different search orders could also be investigated. Results show the well-known ben-

efit of bfs in this area [BHV00], but surprisingly also reveal a benefit of parallel dfs.

Because our concurrent multimap is compatible with the state compression technique

from Chapter 3, we also demonstrate that the memory usage is almost as efficient as

uppaal’s state-caching technique [BLP03] (both techniques are orthogonal and could

be combined).

Chapter 10 builds on these results to realize parallel LTL model checking for timed

automata for the first time. By using cndfs together with the multimap from the pre-

ceding chapter, we obtain scalable timed LTL checking.

We further demonstrate that cndfs can be extended to use the coarse subsumption

abstraction inmultiple parts of the search for accepting cycles, without losing soundness

216



Fo
rm

al
ism

Pr
op

er
ty

Ex
pli

cit
sta

te
+ O

n-
th

e-fl
y

+ C
om

pr
ess

ion
+ P

OR

Pl
ai

n Reachability � � � �

LTL � � � X

. . Livelocks � � � �

Ti
m

ed Reachability � � � –

LTL � � � –

and completeness. Generally, this is not the case, as subsumption abstraction introduces

cycles in the state space, prompting Tripakis to pose it as an open problem (see above).

Experimental results demonstrate that this abstraction could yield a 2-fold reduction of

the number of states.

The table above describes the contributions that the current part makes towards solv-

ing the goals of the thesis (c.f. Table 1.1 in Section 1.5.3). It shows that the scalable

multi-core model checking techniques developed for explicit-state formalisms is trans-

ferred to the domain of timed systems. Partial-order reduction is not considered in the

following chapters, but it will be revisited in the conclusion of the thesis.
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9
Multi-Core Reachability for Timed Automata

Andreas Dalsgaard, Alfons Laarman, Kim G. Larsen, Mads Chr.

Olesen, Jaco van de Pol

Abstract

Model checking of timed automata is a widely used technique. But in order

to take advantage of modern hardware, the algorithms need to be parallelized.

We present a multi-core reachability algorithm for the more general class of well-

structured transition systems, and an implementation for timed automata.

Our implementation extends the opaal tool to generate a timed automaton suc-

cessor generator in c++, that is efficient enough to compete with the uppaal model

checker, and can be used by the discrete model checker LTSmin, whose parallel

reachability algorithms are now extended to handle subsumption of semi-symbolic

states. The reuse of efficient lockless data structures guarantees high scalability and

efficient memory use.

With experiments we show that opaal+LTSmin can outperform the current

state-of-the-art, uppaal. The added parallelism is shown to reduce verification

times from minutes to mere seconds with speedups of up to 40 on a 48-core ma-

chine. Finally, strict BFS and (surprisingly) parallel DFS search order are shown

to reduce the state count, and improve speedups.

About this chapter: The current chapter is based on the paper “Multi-core Reacha-
bility for Timed Automata”, which was published at FORMATS 2012 [Dal+12].

The original text remains largely unmodified, except for the removal of the general
introduction.
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9.1 Introduction

The goal of the current chapter work is to develop scaling multi-core reachability for

timed automata [AD94] as a first step towards full multi-core LTL model checking. A

review of the history of discrete model checkers shows that indeed multi-core reacha-

bility is a crucial ingredient for efficient parallel LTL model checking (see Section 9.2).

To attain our goal, we extended and combined several existing software tools:

LTSmin is a language-independent model checking framework, comprising, inter alia,

an explicit-state multi-core backend [LPW11a; BPW10; BPW09].

opaal is a model checker designed for rapid prototype implementation of new model

checking concepts. It supports a generalized form of timed automata [Dal+11],

and uses the uppaal input format.

The UPPAAL DBM library is an efficient library for representing timed automata

zones and operations thereon, used in the uppaal model checker [BDL04].

Contributions: Wedescribe amulti-core reachability algorithm for timed automata,

which is generalizable to all models where a well-quasi-ordering on the behavior of

states exist [FS01]. The algorithm has been implemented for timed automata, and we

report on the structure and performance of this prototype.

Before wemove on to a description of our solution and its evaluation, we first review

related work, and then briefly introduce the modeling formalism.

Overview: Section 9.3 introduces some definitions of modeling formalisms and

enumerative model checking for explicit-state systems. In Section 9.4, we describe how

opaal and LTSmin are combined and extended to support multi-core model checking

of well-structured transitions systems. Section 9.5 and Section 9.6 then explain in detail

how opaal and LTSmin were extended. Experiments are shown in Section 9.7. We end

with conclusions in Section 9.8.

9.2 Related Work

One efficient model checker for timed automata is the uppaal tool [BDL04; Beh+02].

Our work is closely related to UPPAAL in that we share the same input format and reuse

its editor to create input models. In addition, we reused the open source uppaal dbm

library for the internal symbolic representation of time zones.
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9.3 Preliminaries

Distributed model checking algorithms for timed automata were introduced in

[BHV00; Beh05]. These algorithms exhibited almost linear scalability (50–90% ef-

ficiency) on a 14-node cluster of that time. However, analysis also shows that static

partitioning used for distribution has some inherent limitations [BOS06]. Furthermore,

in the field of explicit-state model checking, the DiVinE tool showed that static parti-

tioning can be reused in a shared-memory setting [BR08]. While the problem of paral-

lelization is considerably simpler in this setting, this tool nonetheless featured subopti-

mal performance with less than 40% efficiency on 16-core machines (see Chapter 2). It

was soon demonstrated that shared-memory systems are exploited better by combining

local search stacks with a lockless hash table as shared passed set and an off-the-shelf

load balancing algorithm for workload distribution [San97a]. Especially in recent ex-

periments on newer 48-core machines as reported in Section 7.4, the latter solution was

clearly shown to have the edge with 50–90% efficiency.

Linear-time, on-the-fly liveness verification algorithms are based on depth-first search

(DFS) order (see Part III). Next to the additional scalability, the shared hash table so-

lution also provides more freedom for the search algorithm, which can be pseudo DFS

and pseudo breadth-first search (BFS) order [LPW11a], but also strict BFS (see Sec-

tion 9.6.2). This freedom has already been exploited by parallel NDFS algorithms for

LTL model checking (see Chapter 5 and Chapter 7) that are linear in the size of the in-

put graph (unlike their BFS-based counterparts). While these algorithms are heuristic in

nature, their scalability has been shown to be superior to their BFS-based counterparts.

9.3 Preliminaries

We will now define the general formalism of well-structured transition systems [FS01;

Abd+96], and specifically networks of timed automata under the zone abstraction [CJ99].

Definition 9.1 (Well-quasi-ordering). A well-quasi-ordering & is a reflexive and tran-
sitive relation over a set X , s.t. for any infinite sequence x0,x1, . . . eventually for some
i < j it will hold that xi & x j.

In other words, in any infinite sequence eventually an element exists which is “larger”

than some earlier element.

Definition 9.2 (Well-structured transition system). A well-structured transition system
is a 3-tuple (S,→,&), where S is the set of states,→: S×S is the (computable) transition
relation and& is a well-quasi-ordering over S, s.t. if s→ t then ∀s′.s& s′ there ∃t ′.s′ →
t ′ ∧ t & t ′.9.1

9.1With strong compatibility, see [FS01]
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We thus require& to be a monotonic ordering on the behavior of states, i.e., if s& t
then t has at least the behavior of s (and possibly more), and we say that t subsumes or

covers s.
One instance of a well-structured transition system is shaped by the symbolic se-

mantics of timed automata. Timed automata are finite state machines with a finite set of

real-valued, resettable clocks. Transitions between states can be guarded by constraints

on clocks, denoted G(C).

Definition 9.3 (Timed automaton). An extended timed automaton is a 7-tuple A =
(L,C,Act,s0,→, IC) where

• L is a finite set of locations, typically denoted by �

• C is a finite set of clocks, typically denoted by c

• Act is a finite set of actions

• s0 ∈ L is the initial location

• →⊆ L×G(C)×Act× 2C×L is the (non-deterministic) transition relation. We
normally write �

g,a,r−−→ �′ for a transition, where � is the source location, g is the
guard over the clocks, a is the action, and r is the set of clocks reset.

• IC : L→G(C) is a function mapping locations to downwards closed clock invari-
ants.

Using the definition of extended timed automata we can now define networks of

timed automata, as modeled by uppaal, see [BDL04] for details. A network of timed

automata is a parallel composition of extended timed automata that enables synchro-

nization over a finite set of channel names Chan. We let ch! and ch? denote the output

and input action on a channel ch ∈Chan.

Definition 9.4 (Network of timed automata). Let Act = {ch!,ch?|ch ∈Chan}∪{τ} be
a finite set of actions, and let C be a finite set of clocks. Then the parallel composition
of extended timed automata Ai = (Li,C,Act,si

0,→i, Ii
C) for all 1≤ i≤ n, where n ∈ N,

is a network of timed automata, denoted A=A1||A2|| . . . ||An.

The concrete semantics of timed automata [BDL04] gives rise to a possibly uncount-

able state space. To model check it a finite abstraction of the state space is needed; the

abstraction used by most model checkers is the zone abstraction [Bou04]. Zones are

sets of clock constraints that can be efficiently represented by difference bound matri-
ces (DBMs) [Ben02]. The fundamental operations of DBMs are:
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• D ↑ modifying the constraints such that the DBM represents all the clock valua-

tions that can result from delay from the current constraint set

• D∩D′ adding additional constraints to the DBM, e.g. because a transition is taken

that imposes a clock constraint (guard clock constraints can also be represented

as a DBM, and we will do so) 9.2. The additional constraints might also make the

DBM empty, meaning that no clock valuations can satisfy the constraints.

• D[r] where r ⊆C is a clock reset of the clocks in r.

• D/B doing maximal bounds extrapolation, where B : C → N0 is the maximal

bounds needed to be tracked for each clock. Extrapolation with respect to maxi-

mal bounds [Beh+03] is needed to make the number of DBMs finite. Basically,

it is a mapping for each clock indicating the maximal possible constant the clock

can be compared to in the future. It is used in such a way that if the value of a

clock has passed its maximal constant, the clock’s value is indistinguishable for

the model.

• D⊆ D′ for checking if the constraints of D′ imply the constraints of D, i.e. D′ is
a more relaxed DBM. D′ has the behavior of D and possibly more.

Lemma 9.1. Timed automata under the zone abstraction are well-structured transition
systems: (S,⇒DBM,Act,&) s.t.

1. S consists of pairs (�,D) where � ∈ L, and D is a DBM.

2. ⇒DBM is the symbolic transition function using DBMs, and Act is as before

3. &: S→ S is defined as (�,D)& (�′,D′) iff �= �′, and D⊆ D′.

Remark that part of the ordering& is compared using discrete equality (the location

vector), while only a subpart is compared using a well-quasi-ordering. Without loss of

generality, and as done in [Dal+11], we can split the state into an explicit part S , and
a symbolic part Σ, s.t. the well-structured transition system is defined over S ×Σ. We

denote the explicit part as s, t,r ∈ S and the symbolic part of states by σ ,τ,ρ,π,υ ∈ Σ,
and a state as a pair (s,σ).

Model checking of safety properties is done by proving or disproving the reachability

of a certain concrete goal location sg.

9.2The DBM might need to be put into normal form after more constraints have been added [Bou04]
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Definition 9.5 ((Safety) Model checking of a well-structured transition system). Given
a well-structured transition system (S ×Σ,→,&), an initial state (s0,σ0) ∈ S×Σ, and
a goal location sg does a path exist (s0,σ0)→ ·· · → (sg,σ ′g).

In practice, the transition system is constructed on-the-fly starting from (s0,σ0) and
recursively applying→ to discover new states. To facilitate this, we extend the next-state

interface of pins with subsumption:

Definition 9.6. A next-state interface with subsumption has three functions:
initial-state() = (s0,σ0),
next-state((s,σ)) = {(s1,σ1), . . . ,(sn,σn)} returning all successors of (s,σ), (s,σ)→
(si,σi), and
covers(σ ′,σ) = σ & σ ′ returning whether the symbolic part σ ′ subsumes σ .

9.4 A Multi-Core Timed Reachability Tool

For the construction of our real-time multi-core model checker, we made an effort to

reuse and combine existing components, while extending their functionality where nec-

essary. For the specification models, we use the uppaal XML format. This enables the

use of its extensive real-time modeling language through an excellent user interface.

To implement the model’s semantics (in the form of a next-state interface) we rely on

opaal and the uppaal dbm library.9.3 Finally, LTSmin is used as a model checking

backend, because of its language-independent design.

Figure 9.1: Reachability with subsumption [Dal+11]

Figure 9.1 gives an overview of the new toolchain. It shows how the XML input

file is read by opaal which generates c++ code. The c++ file implements the pins

interface with subsumption specifically for the input model. Hence, after compilation

(c++ compiler), LTSmin can load the object file to perform the model checking.

9.3http://people.cs.aau.dk/~adavid/UDBM/
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9.5 Successor Generation using opaal

Previously, the opaal tool was used to generate Python code [Dal+11], but im-

portant parts of its infrastructure, e.g., analyzing the model to find max clock con-

stants [Beh+03], can be reused. In Section 9.5, we describe how opaal implements

the semantics of timed automata, and the structure of the generated c++ code.

The pins interface of the LTSmin tool [BPW10] has been shown to enable efficient,

yet language-independent, model checking algorithms of different flavors, inter alia:

distributed [BPW10], symbolic [BPW10] and multi-core reachability [LPW11a] (see

Part II), and LTLmodel checking [BL13a] (see Part III). We extended the pins interface

to distinguish the new symbolic states of the opaal successor generator according to

Definition 9.6. In Section 9.6, we describe our new multi-core reachability algorithms

with subsumption.

9.5 Successor Generation using opaal

The opaal tool was designed to rapidly prototype new model checking features and

as such was designed to be extended with other successor generators. It already im-

plements a substantial part of the uppaal features. For an explanation of the uppaal

features see [BDL04, p. 4-7]. The new c++ opaal successor generator supports the fol-

lowing features: templates, constants, bounded integer variables, arrays, selects, guards,

updates, invariants on both variables and clocks, committed and urgent locations, bi-

nary synchronization, broadcast channels, urgent synchronization, selects, and much of

the C-like language that uppaal uses to express guards and variable updates.

A state in the symbolic transition system using DBMs, is a location vector and a

DBM. To represent a state in the c++ code we use a struct with a number of components:

one integer for each location, and a pointer to a DBM object from the uppaal DBM

library. Therefore a state is a tuple: (�1, . . . , �n,D).
The initial-state function is rather straightforward: it returns a state struct initial-

ized to the initial location vector, and a DBM representing the initial zone (delayed, and

with invariants applied as necessary). The structure of the next-state function is more

involved, because it needs to consider the syntactic structure of the model, as can be

seen in Algorithm 9.1.

At Line 4, we consider all outgoing transitions for the current location of each pro-

cess (Line 3). If the transition is internal, we can evaluate it right away, and possibly

generate a successor at Line 12. If it is a sending synchronization (ch!), we need to

find possible synchronization partners (Line 15). So again we iterate over all processes

and the transitions of their current locations (Line 14–21).

In the generated c++ code a few optimizations have been made, compared to Algo-

rithm 9.1: The loops on line Line 3 and Line 14 have been unrolled, since the number
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Algorithm 9.1 Overall structure of the successor generator

1 proc NEXT-STATE(sin = (�1, . . . , �n,D))
2 out_states := /0
3 for �i ∈ �1, . . . , �n

4 for all �i
g,a,r−−−→ �′i

5 D′ := D∩g
6 if D′ �= /0 � is the guard satisfied?
7 if a = τ � this is not a synchronizing transition
8 D′ := D′[r] ↑ � clock reset, delay
9 D′ := D′ ∩ Ii

C(�
′
i)∩

⋂
k �=i Ik

C(�k) � apply clock invariants
10 if D′ �= /0
11 D′ := D′/B(�1, . . . , �

′
i . . . , �n)

12 out_states := out_states ∪ {(�1, . . . , �
′
i, . . . , �n,D′)}

13 else if a = ch! � binary sync. sender
14 for � j ∈ �1, . . . , �n, j �= i

15 for all � j
g j ,ch?,r j−−−−−→ �′j � find receivers

16 if D′′ := D′ ∩g j �= /0 � receiver guard satisfied?
17 D′′ := D′′[r][r j] ↑ � clock resets, delay
18 D′′ := D′′ ∩ Ii

C(�
′
i)∩ I j

C(�
′
j)∩

⋂
k �∈{i, j} Ik

C(�k) � apply clock invariants
19 if D′′ �= /0
20 D′′ := D′′/B(�1, . . . , �

′
i, . . . , �

′
j . . . , �n)

21 out_states := out_states ∪ {(l1, . . . , l′i , . . . , l′j, . . . , ln,D′′)}
22 return out_states

of processes they iterate over is known beforehand. In that manner the transitions to

consider can be efficiently found. As an optimization, before starting the code genera-

tion, we compute the set of all possible receivers for all channels, for the unrolling of

Line 14. In practice there are usually many receivers but few senders for each channel,

resulting in the unrolling being an acceptable trade-off.

When doing themax bounds extrapolation (/) inAlgorithm 9.1, we obtain the bounds

from a location-dependent function B : L1×·· ·×Ln → (C→N0). This function is pre-

computed in opaal using the method described in [Beh+03].

Some features are not formalized in this work, but have been implemented for ease

of modeling. We support integer variables, urgency that can be modeled using urgen-

t/committed locations and urgent channels, but also channel arrays with dynamically

computed senders, broadcast channels, and process priorities. These are all imple-
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mented as simple extensions of Algorithm 9.1. Other features are supported in the

form of a syntactic expansion, namely: selects, and templates.

To make the next-state function thread-safe, we had to make the uppaal DBM li-

brary thread-safe. Therefore, we replaced its internal allocator with a concurrent mem-

ory allocator (see Section 9.7). We also replaced the internal hash table, used to filter

duplicate DBM allocations, with a concurrent hash table.

9.6 Well-Structured Transition Systems in LTSmin

The current section presents the parallel reachability algorithm that was implemented

in LTSmin to handle well-structured transition systems. According to Definition 9.6,

we can split up states into a discrete part, which is always compared using equality (for

timed automata this consists of the locations and variables), and a part that is compared

using a well-quasi-ordering (for timed automata this is the DBM).

We recall the sequential algorithm from [Dal+11] (Algorithm 9.2) and adapt it to use

the next-state interface with subsumption. At its basis, this algorithm is a search with

a waiting set (W ), containing the states to be explored, and a passed set (P), containing
the states that are already explored.

New successors (t,τ) are added to W (Line 9), but only if they are not subsumed by

previous states (Line 8). Additionally, states in the waiting set W that are subsumed by

the new state are discarded (Line 9), avoiding redundant explorations.

Algorithm 9.2 Reachability with subsumption [Dal+11]

1 proc reachability(sg)
2 W := { INITIAL-STATE() }; P := /0
3 while W �= /0
4 W := W \ (s,σ) for some (s,σ) ∈W
5 P := P∪{(s,σ)}
6 for (t,τ) ∈ NEXT-STATE((s,σ)) do
7 if t = sg then report & exit
8 if � ∃ρ : (t,ρ) ∈W ∪P∧COVERS(ρ,τ)
9 W := W \{(t,ρ) | COVERS(τ,ρ)}∪ (t,τ)
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9.6.1 A Parallel Reachability Algorithm with Subsumption

In the parallel setting, we localize all work sets (Qp, for each worker p) and create

a shared data structure L storing both W and P. We attach a status flag passed or

waiting to each state in L to create a global view of the passed and waiting set and

avoid unnecessary reexplorations. L can be represented as a multimap, saving multiple

symbolic state parts with each explicit state part L : S → Σ∗. To make L thread-safe,

we protect its operations with a fine-grained locking mechanism that locks only the part

of the map associated with an explicit state part s: lock(L(s)), similar to the spinlocks

used in Chapter 2. An off-the-shelf load balancer takes care of distributing work at the

startup and when some Qp runs empty prematurely. This design corresponds to the

shared hash table approach discussed in Section 9.2 and avoids a static partitioning of

the state space.

Algorithm 9.3 presents the discussed design. The algorithm is initialized by calling

reachability with the desired number of threads P and a discrete goal location sg. This

method initializes the shared data structure L and gets the initial state using the initial-

state function from the next-state interface with subsumption. The initial state is then

Algorithm 9.3 Reachability with cover update of the waiting set

1 global L : S→ (Σ×{waiting,passed})∗

3 proc reachability(P,sg)
4 L := S→ /0
5 (s0,σ0) := s := INITIAL-STATE()
6 L(s0) := (σ0,waiting)
7 search(s,sg,1)|| . . . ||search(s,sg,P)

9 proc update(t,τ)
10 lock(L(t))
11 for (ρ, f ) ∈ L(t) do
12 if COVERS(ρ,τ)
13 unlock(L(t))
14 return true
15 else if f = waiting∧COVERS(τ,ρ)
16 L(t) := L(t)\ (ρ,waiting)
17 L(t) := L(t)∪ (τ,waiting)
18 unlock(L(t))
19 return false

21 proc search((s0,σ0),sg, p)
22 Qp := if p = 1 then {(s0,σ0)} else /0
23 while Qp �= /0 ∨ balance(Qp)
24 Qp := Qp \ (s,σ) for some (s,σ) ∈ Qp
25 if ¬grab(s,σ) then continue
26 for (t,τ) ∈ NEXT-STATE((s,σ)) do
27 if t = sg then report & exit
28 if ¬update(t,τ)
29 Qp := Qp∪ (t,τ)

31 proc grab(s,σ)
32 lock(L(s))
33 if σ �∈ L(s)∨passed = L(s,σ)
34 unlock(L(s))
35 return false
36 L(s,σ) := passed
37 unlock(L(s))
38 return true
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added to L and the worker threads are initialized at Line 7. Worker thread 1 explores

the initial state; work load is propagated later.

The while loop on Line 23 corresponds closely to the sequential algorithm, in a

quick overview: a state (s,σ) is taken from the work set at Line 24, its flag is set to

passed by grab if it were not already, and then the successors (t,τ) of (s,σ) are checked
against the passed and the waiting set by update. We now discuss the operations on L
(update, grab) and the load balancing in more detail.

To implement the subsumption check (line Line 8–9 inAlgorithm 9.2) for successors

(t,τ) and to update the waiting set concurrently, update is called. It first locks L on t.
Now, for all symbolic parts and status flag ρ, f associated with t, the method checks if

τ is already covered by ρ . In that case (t,τ) will not be explored. Alternatively, all ρ
with status flag waiting that are covered by τ are removed from L(t) and τ is added. The

update algorithmmaintains the invariant that a state in the waiting set is never subsumed

by any other state in L: ∀s∀(ρ, f ),(ρ ′, f ′) ∈ L(s) : f = waiting∧ ρ �= ρ ′ ⇒ ρ �& ρ ′
(Inv. 1). Hence, similar to Algorithm 9.2 Line 8–9, it can never happen that (t,τ) first
discards some (t,ρ) from L(s) (Line 16) and is discarded itself in turn by some (t,ρ ′)
in L(s) (Line 12), since then we would have ρ & τ & ρ ′; by transitivity of & and the

invariant, ρ and ρ ′ cannot be both in L(t). Finally, notice that update unlocks L(t) on
all paths.

The task of the method grab is to check if a state (s,σ) still needs to be explored, as

it might have been explored by another thread in the meantime. It first locks L(s). If σ
is no longer in L(s) or it is no longer globally flagged waiting (Line 33), it is discarded

(Line 25). Otherwise, it is “grabbed” by setting its status flag to passed. Notice again

that on all paths through grab, L(s) is unlocked.
Finally, the method balance handles termination detection and load balancing. It

has the side-effect of adding work to Qp. We use a standard solution [San97b].

9.6.2 Exploration Orders

The shared hash table approach gives us the freedom to allow for a DFS or BFS explo-

ration order depending on the implementation of Qp. Note, however, that only pseudo-

DFS/BFS is obtained, due to randomness introduced by parallelism.

It has been shown for timed automata that the number of generated states is quite

sensitive to the exploration order and that in most cases strict BFS shows the best re-

sults [BHV00]. Fortunately, we can obtain strict BFS by synchronizing workers be-

tween the different BFS levels. To this end, we first split Qp into two separate sets that

hold the current BFS level (Cp) and the next BFS level (Np) [Aga+10]. The order within

these sets does notmatter, as long as the current is explored before the next set. Load bal-

ancing will only be performed onCp, hence a level terminates once Cp = /0 for all p. At
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Algorithm 9.4 Strict parallel BFS

1 proc search(s0,σ0, p)
2 Cp := if p = 1 then {(s0,σ0)} else /0
3 do
4 while Cp �= /0 ∨ balance(Cp)
5 Cp := Cp \ (s,σ) for some (s,σ) ∈Cp
6 . . .
7 Np := Np∪ (t,τ)
8 load := reduce(sum, |Np|,P)
9 Cp, Np := Np, /0

10 while load �= 0

this point, if Np = /0 for all p, the algorithm can terminate because the next BFS level is

empty. The synchronizing reduce method counts ∑P
i=1 |Ni| (similar to mpi_reduce).

Algorithm 9.4 shows a parallel strict-BFS implementation. An extra outer loop

iterates over the levels, while the inner loop (Line 4–7) is the same as in Algorithm 9.3.

Except for the lines that add and remove states to and from the work set, which now

operate on Np andCp. The (pointers to) the work sets are swapped, after the reduce call

at Line 8 calculates the load of the next level.

9.6.3 A Data Structure for Semi-Symbolic States

In Chapter 2, we introduced a lockless hash table, which we reuse here to design a data

structure for L that supports the operations used in Algorithm 9.3. To allow for massive

parallelism on modern multi-core machines with steep memory hierarchies, it is crucial

to keep a low memory footprint. To this end, lookups in the large table of state data are

filtered through a separate smaller table of hashes. The table assigns a unique number

(the hash location) to each explicit state stored in it: D : S → N. In finite reality, we

have: D : S → {1, . . . ,N}.
We now reuse the state numbering of D to create amultimap structure for L. The first

component of the new data structure is an array I[N] used for indexing on the explicit

state parts. To associate a set of symbolic states (pointers to DBMs) with our explicit

state stored in D[x], we are going to attach a linked list structure to I[x]. Creating a

standard linked list would cause a single cache line access per element, increasing the

memory footprint, and would introduce costly synchronizations for each modification.

Therefore, we allocate multi-buckets, i.e., an array of pointers as one linked list element.

To save memory, we store lists of just one element directly in I and completely fill the

230



9

9.6 Well-Structured Transition Systems in LTSmin
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Figure 9.2: Data structure for L, and operations

last multi-bucket.

Figure 9.2 shows three instances of the discussed data structure: L,L′ and L′′. Each
multimap is a pointer (arrow) to an array I shown as a vertical bucket array. L contains

{(s,σ),(t,τ),(t,ρ),(t,υ)}. We see how a multi-bucket with (fixed) length 3 is created

for t, while the single symbolic state attached to s is kept directly in I. The figure shows

how σ is moved when (s,π) is added by the add operation (dashed arrow), yielding L′.
Adding π to t would have moved υ to a new linked multi-bucket together with π .

Removing elements from the waiting list is implemented by marking bucket entries

as tombstone, so they can later be reused (see L′′). This avoids memory fragmentation

and expensive communication to reuse multi-buckets. For highest scalability, we allo-

cate multi-buckets of size 8, equal to a cache line. Other values can reduce memory

usage, but we found this sufficiently efficient (see Section 9.7).

We still need to deal with locking of explicit states, and storing of the various flags

for symbolic states (waiting/passed). Internally, the algorithms also need to distinguish

between the different buckets: empty, tomb stone, linked list pointers and symbolic state

pointers. To this end, we can bit-cram additional bits into the pointers in the buckets,

Algorithm 9.5 Bit layout of word-sized bucket

struct link_or_dbm {
bit pointer[60]
bit flag ∈ {waiting,passed}
bit lock ∈ {locked,unlocked}
bit status[2] ∈ {empty, tomb,dbm_ptr, list_ptr}

}
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as is shown in Algorithm 9.5. Now lock(L(s)) can be implemented as a spinlock using

the atomic compare-and-swap (CAS) instruction on I[s] (see Section 2.2). Since all

operations on L(s) are done after lock(L(s)), the corresponding bits of the buckets can

be updated and read with normal load and store instructions.

9.6.4 Improving Scalability through aNon-Blocking Implemen-
tation

The size of the critical regions in Algorithm 9.3 depends crucially on the |Σ|/|S| ratio; a
higher ratio means that more states in L(t) have to be considered in the method update
(t,τ), affecting scalability negatively. A similar limitation is reported for distributed

reachability [BOS06]. Therefore, we implemented a non-blocking version: instead of

first deleting all subsumed symbolic states with a waiting flag, we atomically replace

them with the larger state using CAS. For a failed CAS, we retry the subsumption check

after a reread. L can be atomically extended using the well-known read-copy-update
technique. However, workers might miss updates by others, as Inv. 1 no longer holds.

This could cause |Σ| to increase again.

9.7 Experiments

To investigate the performance of the generated code, we compare full reachability in

opaal+LTSmin with the current state-of-the-art (uppaal).9.4 To investigate scalability,

we benchmarked on a 48-core machine (a four-way AMDOpteronTM 6168) with a vary-

ing number of threads. Statistics on memory usage were gathered and compared against

uppaal. We also experimented with different exploration orders and tree compression

from Chapter 3. Experiments were repeated 5 times.

We consider three models from the uppaal demos: viking (one discrete variable,

but many synchronizations), train-gate (relatively large amount of code, several

variables), and fischer (very small discrete part). Additionally, we experiment with a

generated model, train-crossing, which has a different structure frommost hand-

made models. For some models, we created multiple numbered instances, the numbers

represent the number of processes in the model.

For uppaal, we ran the experiments with BFS and disabled space optimization. The

opaal_ltsmin script in opaal was used to generate and compile models. In LTSmin

we used a fixed hash table (--state=table) size of 226 states (-s26), waiting set

updates as in Algorithm 9.3 (-u1) and multi-buckets of size 8 (-l8).

9.4 opaal is available at https://code.launchpad.net/~opaal-developers/opaal/
opaal-ltsmin-succgen, LTSmin at http://fmt.cs.utwente.nl/tools/ltsmin/
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9.7 Experiments

9.7.1 Performance & Scalability

Table 9.1 shows the reachability runtimes of the different models in uppaal and

opaal+LTSmin with strict BFS (--strategy=sbfs). Except for fischer6, we

see that both tools compete with each other on the sequential runtimes, with 2 threads

however opaal+LTSmin is faster than uppaal. With the massive parallelism of 48

cores, we see how verification tasks ofminutes are reduced tomere seconds. The outlier,

fischer6, is likely due to the use of more efficient clock extrapolations in uppaal,

and other optimizations, as witnessed by the evolution of the runtime of this model

in [Beh+11; Amn+01].

Table 9.1: S , |Σ| ( |Σ||S| ) and runtimes (sec) in uppaal and opaal+LTSmin (strict BFS)

|S| uppaal opaal+LTSmin (cores)

T |Σ| |Σ1| |Σ48| T1 T2 T8 T16 T32 T48

train-gate-N10 7e+07 837.4 1.0 1.0 1.0 573.3 297.8 76.7 39.4 21.1 14.4

viking17 1e+07 207.8 1.0 1.5 1.5 331.5 172.5 44.2 22.7 11.9 8.6

train-gate-N9 7e+06 76.8 1.0 1.0 1.0 51.8 27.5 7.2 3.7 2.0 1.4

viking15 3e+06 38.0 1.0 1.5 1.5 67.0 34.8 9.7 5.1 3.0 2.3

train-crossing 3e+04 48.3 20.8 16.1 17.3 23.1 37.8 3.7 2.1 1.4 1.4

fischer6 1e+04 0.1 0.3 50.1 50.1 177.3 112.3 39.4 30.4 27.9 30.3

We noticed that the 48-core runtimes of the smaller models were dominated by the

small BFS levels at the beginning and the end of the exploration due to synchronization

in the load balancer and the reduce function. This overhead takes consistently 0.5–1

second, while it handles less than thousand states. Hence, to obtain useful scalability

measurements we excluded this time for the benchmarks.

To investigate the scalability better, we plotted the speedups in Figure 9.3 using

the average runtimes from Table 9.1. The standard deviation of the speedup is plotted

as vertical lines (mostly negligible, hence invisible). Most models show almost linear

scalability with a speedup of up to 40, e.g. train-gate-N10. As expected, we see

that a high |Σ|/|S| ratio causes low scalability (see fischer and train-crossing
and Table 9.1). Therefore, we tried the non-blocking variant (Section 9.6.3) of our

algorithm (-n). As expected, the speedups in Figure 9.4 improve and the runtimes

even show a threefold improvement for fischer.6 (Table 9.2). The efficiency on 48
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Table 9.2: |Σ| ( |Σ||S| ) and runtimes (sec) with non-blocking strict BFS, pseudo DFS and

pseudo BFS

NB Strict BFS (Pseudo) DFS (Pseudo) BFS

|Σ1| |Σ48| T1 T48 |Σ1| |Σ48| T1 T48 |Σ1| |Σ48| T1 T48

train-gate-N10 1.0 1.0 547.9 14.5 1.0 1.0 647.8 15.6 1.0 1.0 559.3 13.1

viking17 1.5 1.5 320.1 9.2 1.6 1.6 386.5 9.1 1.5 1.5 325.6 7.8

train-gate-N9 1.0 1.0 51.2 1.4 1.0 1.0 61.7 1.7 1.0 1.0 51.9 1.6

viking15 1.5 1.5 64.8 2.5 1.6 1.6 80.2 3.1 1.5 1.5 66.0 2.3

train-crossing 16.1 16.1 23.1 0.9 169.8 179.0 3371.0 297.4 16.1 37.1 24.5 157.5

fischer6 50.1 50.1 196.1 10.7 54.4 39.4 405.1 10.6 50.1 58.1 206.0 32.3

cores remains closely dependent to the |Σ|/|S| ratio of the model (or the average length

of the lists in the multimap), but the scalability is now at least sublinear and not stagnant

anymore.

We further investigated different search orders. Figure 9.5 shows results with pseudo

BFS order (--strategy=bfs). While speedups become higher due to the lacking

level synchronizations, the loose search order tends to reach “large” states later and

therefore generates more states for two of the models (|Σ1| vs |Σ48| in Table 9.2). This

demonstrates that our strict BFS implementation indeed pays off.

Finally, we also experimented with randomized DFS search order (--perm=rr
--strategy=dfs). Table 9.2 shows that DFS causes again more states to be gener-

ated. But, surprisingly, the number of states actually reduces with the parallelism for the

fischer6model, even below the state count of strict BFS from Table 9.1! This causes

a superlinear speedup in Figure 9.6 and threefold runtime improvement over strict BFS.

We do not consider this behavior as an exception (even though train-crossing
does not show it), since it is compatible with our observation that parallel DFS finds

shorter counterexamples than parallel BFS (see Section 7.4.4).

9.7.2 Design Decisions

Some design decisions presented here were motivated by earlier work that has proven

successful for multi-core model checking (see Part II and Part III). In particular, we

reused the shared hash table and a synchronous load balancer [San97b]. Even though
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Figure 9.6: Speedup randomized pseudo DFS
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we observed load distributions close to ideal, a modern work stealing solution might

still improve our results, since the work granularity for timed reachability is higher than

for untimed reachability. The main bottlenecks, however, have proven to be the increase

in state count by parallelism and the cost of the spinlocks due to a high |Σ|/|S| ratio. The
latter we partly solved with a non-blocking algorithm. Strict BFS orders have proven to

aid the former problem and randomized DFS orders could aid both problems.

9.7.3 Memory Usage

Table 9.3 shows thememory consumption of uppaal (U-S0) and sequential opaal+LTSmin

(O+L1) with strict BFS. From it, we conclude that our memory usage is within 25% of

uppaal’s for the larger models (where these measurements are precise enough). Fur-

thermore, we extensively experimented with different concurrent allocators and found

that TBB malloc (used in the current chapter) yields the best performance for our algo-

rithms.9.5 Its overhead (O+L1 vs O+L48 in Table 9.3) appears to be limited to amoderate

fixed amount of 250MB more than the sequential runs, for which we used the normal

glibc allocator.

We also counted thememory usage inside the different data structures: themultimap

L (including partly-filled multi-buckets), the hash table D, the combined local work sets

(Q), and the DBM duplicate table (dbm). As we expected the overhead of the 8-sized

multi-buckets is little compared to the size of D and the DBMs. We may however

replace D with the compressed, parallel tree table (T) from Chapter 3. The resulting

total memory usage (O+LT ), can now be dominated by L, as is the case for viking17.
But if we reduce L to a linked list (-l2), its size shrinks only by 60% to 214MB for

this model (L2). Just a modest gain.

Table 9.3: Memory usage (MB) of both uppaal (U-S0 and U-S2) and opaal+LTSmin

T D L L2 Q dbm O+L1 O+L48 O+LT
1 O+LT

48 U-S0 U-S2

train-gate-N10 777 5989 499 499 249 1363 8101 8241 2790 3028 6091 3348

viking17 156 1040 536 214 40 87 1704 1931 828 1047 1579 722

train-gate-N9 81 549 50 50 24 61 684 815 214 347 607 332

viking15 32 190 112 44 8 55 364 581 203 423 333 162

train-crossing 0 2 5 7 0 419 426 623 425 622 48 64

fischer6 0 0 5 9 1 176 429 512 290 429 0 4

9.5cf. http://fmt.cs.utwente.nl/tools/ltsmin/formats-2012/ for additional data
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9.8 Conclusions

For completeness, we included the results of uppaal’s state space optimization (U-

S2). As expected, it also yields great reductions, which is the more interesting since the

two techniques are orthogonal and could be combined.

9.8 Conclusions

We presented novel algorithms and data structures for multi-core reachability on well-

structured transition systems and an efficient implementation for timed automata in par-

ticular. Experiments show good speedups, up to 40 times on a 48-core machine and

also identify current bottlenecks. In particular, we see speedups of more than 60 times

compared to uppaal. Memory usage is limited to an acceptable maximum of 25%more

than uppaal.

Our experiments demonstrate the flexibility of the search order that our parallel

approach allows for. BFS-like order is shown to be occasionally slightly faster than

strict BFS but is substantially slower on other models, as previously observed in the

distributed setting. A new surprising result is that parallel randomized (pseudo) DFS

order sometimes reduces the state count below that of strict BFS, yielding a substantial

speedup in those cases.

Previous work has shown that better parallel reachability in Part II crucially enables

new and better solutions to parallel model checking of liveness properties (see Part III).

Therefore, our natural next step is to port multi-core nested depth-first search solutions

to the timed automata setting.

Because of our use of generic toolsets, more possibilities are open to be explored.

The opaal support for the uppaal language can be extended and support for optimiza-

tions like symmetry reduction and partial-order reduction could be added, enabling eas-

ier modeling and better scalability. Additionally, lattice-based languages [Dal+11] can

be included in the c++ code generator. On the backend side, the distributed [BPW10]

and symbolic [BPW10] algorithms in LTSmin can be extended to support subsumption,

enabling other powerful means of verification. We also plan to add a join operator to

the pins interface, to enable abstraction/refinement-based approaches [Dal+11].
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Multi-Core LTL Model Checking for Timed Automata

Alfons Laarman, Mads Chr. Olesen, Andreas Dalsgaard, Kim G.

Larsen, Jaco van de Pol

Abstract

The current chapter contributes to the multi-core model checking of timed au-

tomata (TA) with respect to liveness properties, by investigating checking of TA

Büchi emptiness under the very coarse inclusion abstraction or zone subsumption,

an open problem in this field.

We show that in general Büchi emptiness is not preserved under this abstrac-

tion, but some other structural properties are preserved. Based on those, we pro-

pose a variation of the classical nested depth-first search (Ndfs) algorithm that

exploits subsumption. In addition, we extend the multi-core Cndfs algorithm with

subsumption, providing the first parallel LTL model checking algorithm for timed

automata.

The algorithms are implemented in LTSmin, and experimental evaluations show

the effectiveness and scalability of both contributions: subsumption halves the

number of states in the real-world FDDI case study, and the multi-core algorithm

yields speedups of up to 40 using 48 cores.

About this chapter: The current chapter is based on the paper “Multi-core Empti-
ness Checking of Timed Büchi Automata Using Inclusion Abstraction”, which was
published at CAV 2013 [Laa+13b].

Compared to the original text, we extended the discussion on the implementation in
Section 10.6.2, relating this content more closely to the prequel work in Chapter 9.
This also allows for a more detailed discussion of the scalability results, as reflected
by the added conclusion (Section 10.7). We also shortened the title.
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10.1 Introduction

Model checking safety properties can be done with reachability, but only guarantees

that the system does not enter a dangerous state, not that the system actually serves

some useful purpose. To model check such liveness properties is more involved since

they state conditions over infinite executions, e.g. that a request must infinitely often

produce a result. One of the most well-known logics for describing liveness properties

is Linear Temporal Logic (LTL) [BK08].

The automata-theoretic approach for LTL model checking [VW86] solves the prob-

lem efficiently by translating it to the Büchi emptiness problem, which has been shown

decidable for real-time systems as well [AD94]. However, its complexity is exponential,

both in the size of the system specification and of the property. In the current chapter,

therefore, we consider two possible ways of alleviating this so-called state-space ex-

plosion problem: (1) by utilizing the many cores in modern processors, and (2) by

employing coarser abstractions to the state space.

Related work. The verification of timed automata was made possible by Alur and

Dill’s region construction [AD94], which represents clock valuations using constraints,

called regions. A max-clock constant abstraction, or k-extrapolation, bounded the num-

ber of regions. Since the region construction is exponential in the number of clocks and

constraints in the TA, coarser abstractions such as the symbolic zone abstraction have

been studied [Dil89], and also implemented in, among others, the state-of-the-art model

checker uppaal [LPY97]. Later, the k-extrapolation for zones was refined to include

lower clock constraints in the so-called lower/upper-bound (LU) abstraction proposed

in [Beh+06]. Finally, the inclusion abstraction, or simply subsumption, prunes reacha-
bility according to the partial order of the symbolic states [DT98]. All these abstractions

preserve reachability properties [DT98; Beh+06].

Model checking LTL properties on timed automata, or equivalently checking timed

Büchi automata (TBA) emptiness [HS10], was proven decidable in [AD94], by using the

region construction. Bouajjani et al. [BTY97] showed that the region-closed simulation

graph preserve TBA emptiness. Tripakis [Tri09] proved that the k-extrapolated zone

simulation graph also preserves TBA emptiness, while posing the question whether

other abstractions such as the LU abstraction and subsumption also preserve this prop-

erty. Li [Li09] showed that the LU abstraction does in fact preserve TBA emptiness.

The status of subsumption in LTL model checking is still open.

One way of establishing TBA emptiness on a finite simulation graph is the nested

depth-first (Ndfs) algorithm [Cou+92; HPY96]. Recently, some multi-core version of

these algorithms were introduced by Evangelista and Laarman et al. [EPY11; Laa+11;

240



10

10.2 Preliminaries: Timed Büchi Automata and Abstractions

Eva+12] (see Part III for [Laa+11; Eva+12]). These algorithms have the following

properties: their runtime is linear in the number of states in the worst case while typi-

cally yielding good scalability; they are on-the-fly [LP11] and yield short counterexam-

ples Section 7.4.4. The latest version, called Cndfs, combines all these qualities and

decreases memory usage (see Section 7.4).

In previous work, we parallelized reachability for timed automata using the men-

tioned abstractions (see Chapter 9). It resulted in almost linear scalability, and speedups

of up to 60 on a 48-core machine, compared to uppaal. The current work extends this

previous work to the setting of liveness properties for timed automata. It also shares the

uppaal input format, and re-uses the uppaal dbm library.

Problem statement. Parallel model checking of liveness properties for timed sys-

tems has been a challenge for several years. While advances were made with distributed

versions of e.g. uppaal [Beh05], these were limited to safety properties. Furthermore,

it is unknown how subsumption, the coarsest abstraction, can be used for checking TBA

emptiness.

Contributions. (1) For the first time, we realize parallel LTL model checking of

timed systems using the Cndfs algorithm. (2) We prove that subsumption preserves

several structural state-space properties (Section 10.3), and show how these proper-

ties can be exploited by Ndfs and Cndfs (Section 10.4 and Section 10.5). (3) We

implement Ndfs and Cndfs with subsumption in the LTSmin toolset [LPW11a] and

opaal [Dal+11]. Finally, (4) our experiments show considerable state-space reductions

by subsumption and good parallel scalability of Cndfs with speedups of up to 40 using

48 cores.

10.2 Preliminaries: Timed Büchi Automata and Ab-
stractions

In the current section, we first recall the formalism of timed Büchi automata (TBA), that

allowsmodeling of both a real-time system and its liveness requirements. Subsequently,

we introduce finite symbolic semantics using zone abstraction with extrapolation and

subsumption. Finally, we show which properties are known to be preserved under said

abstractions.
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10.2.1 Timed Automata and Transition Systems

Definition 10.2 provides a basic definition of a TBA. It can be extended with features

such as finitely valued variables, and parallel composition to model networks of timed

automata, as done in uppaal [BDL04].

Definition 10.1 (Guards). Let G(C) be a conjunction of clock constraints over the set
of clocks c ∈ C, generalized by:

g ::= c �� n | g∧g | true

where n ∈ N0 is a constant, and �� ∈ {<,≤,=,>,≥} is a comparison operator. We
call a guard downwards closed if all �� ∈ {<,≤,=}.

Definition 10.2 (Timed Büchi Automaton). A timed Büchi automaton (TBA) is a 6-
tuple B = (L,C,F , l0,→, IC), where

• L is a finite set of locations, typically denoted by �, where �0 ∈ L is the initial
location, and F ⊆ L, is the set of accepting locations,

• C is a finite set of clocks, typically denoted by c,

• → ⊆ L×G(C)× 2C ×L is the (non-deterministic) transition relation. We write
� g,R−→ �′ for a transition, where � is the source and �′ the target location, g∈ G(C)
is a transition guard, R⊆ C is the set of clocks to reset, and

• IC : L→G(C) is an invariant function, mapping locations to a set of guards. To
simplify the semantics, we require invariants to be downwards-closed.

The states of a TBA involve the notion of clock valuations. A clock valuation is

a function v : C → R≥0. We denote all clock valuations over C with VC . We need

two operations on clock valuations: v ′ = v + δ for a delay of δ ∈ R≥0 time units s.t.

∀c ∈ C : v ′(c) = v(c)+δ , and reset v ′ = v [R] of a set of clocks R ⊆ C s.t. v ′(c) = 0 if

c ∈ R, and v ′(c) = v(c) otherwise. We write v |= g to mean that the clock valuation v
satisfies the clock constraint g.

Definition 10.3 (Transition system semantics of a TBA). The semantics of a TBA B is
defined over the transition system T SB

v = (Sv ,s0,⇒v ) s.t.:

1. A state s ∈ Sv is a pair: (�,v) with a location � ∈ L, and a clock valuation v .

2. An initial state s0 ∈ Sv , s.t. s0 = (�0,v0), where ∀c ∈ C : v0(c) = 0.
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3. ⇒v : Sv × ({ε}∪R≥0)×Sv is a transition relation with (s,a,s′) ∈⇒v , denoted
s a→ s′ s.t. there are two types of transitions:

(a) A discrete (instantaneous) transition: (�,v) ε→ (�′,v ′) if an edge � g,R−→ �′

exists, v |= g and v ′ = v [R], and v ′ |= IC(�′).
(b) A delay by δ time units: (�,v) δ→ (�,v +δ ) for δ ∈ R≥0 if v +δ |= IC(�).

�0start �1 �2

y≤ 2 y≤ 2

y := 0
x > 2,x := 0,y := 0x := 0,y := 0

Figure 10.1: A timed Büchi automaton.

We say a state s ∈ S is accepting, or s ∈ F , when s = (�, . . .) and � ∈ F . We write

s δ→ ε→ s′ if there exists a state s′′ such that s δ→ s′′ and s′′ ε→ s′. We denote an infinite run

in T SB
v = (Sv ,s0,⇒v ) as an infinite path π = s1

δ1→ ε→ s2
δ2→ ε→ s3 . . . The run is accepting

if there exist an infinite number of indices i s.t. si ∈ F . A(n infinite) run’s time lapse is

Time(π) =∑i≥1 δi. An infinite path π in T SB
v is time convergent, or Zeno, if Time(π)<

∞, otherwise it is divergent. For example, the TBA in Figure 10.1 has an infinite run:

(�0,v0)
1→ (�0,v0)

1→ ·· · , that is not accepting, but is non-Zeno. We claim that there is

no accepting non-Zeno run, exemplified by the finite run:

(�0,v0)
2→ ε→ (�1,v1)

0→ ε→ (�2,v0)
0→ ε→ (�1,v0)

1.9→ �ε→ .

Definition 10.4 (ATBA’s language and the emptiness problem). The language accepted
by B, denoted L(B), is defined as the set of non-Zeno accepting runs. The language
emptiness problem for B is to check whether L(B) = /0.
Remark 10.1 (Zenoness). Zenoness is considered a modeling artifact as the behavior
it models cannot occur in any real system, which after all has finite processing speeds.
Therefore, Zeno runs should be excluded from analysis. However, any TBA B can be
syntactically transformed to a strongly non-Zeno B’ [TYB05], s.t. L(B) = /0 iffL(B′) =
/0. Therefore, in the following, w.l.o.g., we assume that all TBAs are strongly non-Zeno.
Definition 10.5 (Time-abstracting simulation relation). A time-abstracting simulation
relation R is a binary relation on Sv s.t. if s1Rs2 then:
• If s1

ε→ s′1, then there exists s′2 s.t. s2
ε→ s′2 and s′1Rs′2.

• If s1
δ→ s′1, then there exists s′2 and δ ′ s.t. s2

δ ′→ s′2 and s′1Rs′2.
If both R and R−1 are time-abstracting simulation relations, we call R a time-abstracting

bisimulation relation.
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10.2.2 Symbolic Abstractions using Zones

A zone is a symbolic representation of an infinite set of clock valuations by means of

a clock constraint. These constraints are conjuncts (Definition 10.6) of simple linear

inequalities on clock values, and thus describe (unbounded) convex polytopes in a |C|-
dimensional plane (e.g. Figure 10.2). Therefore, zones can be efficiently represented

by Difference Bounded Matrices (DBMs) [Ben02].

Definition 10.6 (Zones). Similar to the guard definition, let Z(C) be the set of clock
constraints over the set of clocks c,c1,c2 ∈ C generalized by:

Z ::= c �� n | c1− c2 �� n | Z∧Z | true | false

where n ∈ N0 is a constant, and �� ∈ {<,≤,>,≥} is a comparison operator. We also
use = for equalities, short for the conjunction of ≤ and ≥.

We write v |= Z if the clock valuation v is included in Z, for the set of clock val-

uations in a zone �Z� = {v | v |= Z}, and for zone inclusion Z ⊆ Z′ iff �Z� ⊆ �Z′�.
Notice that �false� = /0. Using the fundamental operations below, which are detailed

in [Ben02], we define the zone semantics over simulation graphs in Definition 10.7.

Most importantly, these operations are implementable in O(n3) or O(n2) and closed

w.r.t. Z .

clock delay: �Z ↑� = {v +δ | δ ∈ R≥0,v ∈ �Z�},
clock reset: �Z[R]� = {v [R]|v ∈ �Z�}, and
constraining: �Z∧Z′� = �Z�∩ �Z′�.

Definition 10.7 (Zone semantics). The semantics of a TBA B = (L,C,F , �0,→,
IC) under the zone abstraction is a simulation graph: SG(B) = (SZ ,s0,⇒Z) s.t.:

1. SZ consists of pairs (�,Z) where � ∈ L, and Z ∈ Z is a zone.

y

x0
1
2
3

0 1 2 3 4 5

Figure 10.2: A graphical representation of a zone over 2 clocks: 0≤ x− y≤ 2.
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2. s0 ∈ SZ is an initial state (�0,Z0 ↑ ∧ IC(�0)) with Z0 =
∧

c∈C c = 0.

3. ⇒Z is the symbolic transition function using zones, s.t. (s,s′) ∈⇒Z , denoted
s⇒ s′ with s= (�,Z) and s′ = (�′,Z′), if an edge � g,R−→ �′ exists, and Z∧g �= false,
Z′ = (((Z∧g)[R]) ↑)∧ IC(�′) and Z′ �= false.

Any simulation graph is a discrete graph, hence cycles and lassos are defined in the

standard way. We write s ⇒+ s′ iff there is a non-empty path in SG(B) from s to s′,
or s ⇒∗ s′ if the path can be empty. An infinite run in SG(B) is an infinite sequence

of states π = s1s2 . . . , s.t. si ⇒ si+1 for all i ≥ 1. It is accepting if it contains infinitely

many accepting states. If SG(B) is finite, any infinite path from s0 defines a lasso:

s0 ⇒∗ s⇒+ s.

Definition 10.8 (A TBA’s language under Zone Semantics). The language accepted
by a TBA B under the zone semantics, denoted L(SG(B)), is the set of infinite runs
π = s0s1s2 . . . s.t. there exists an infinite set of indices s.t. si ∈ F .

Because there are infinitely many zones, the state space of SG(B) may also be in-

finite. To bound the number of zones, extrapolation methods combine all zones which

a given TBA B cannot distinguish. For example, k-extrapolation finds the largest upper

bound k in the guards and invariants of B, and extrapolates all bounds in the zones Z
that exceed this value, while LU-extrapolation uses both the maximal lower bound l
and the maximal upper bound u [Beh+06]. Extrapolation can be refined on a per-clock

basis [Beh+06], and on a per-location basis.

Definition 10.9. An abstraction over a simulation graph SG(B) = (SZ ,s0,⇒Z) is a
mapping α : SZ →SZ s.t. if α((�,Z)) = (�′,Z′) then �= �′ and Z ⊆ Z′.
If the image of an abstraction α is finite, we call it a finite abstraction.

Definition 10.10. Abstraction α over zone transition system SG(B) = (SZ ,s0,⇒Z)
induces a zone transition system SGα(B) = (Sα ,α(s0),⇒α) where:

• Sα = {α(s) | s ∈ SZ} is the set of states, s.t. Sα ⊆ SZ ,

• α(s0) is the initial state, and

• (s,s′) ∈⇒α iff (s,s′′) ∈⇒Z and s′ = α(s′′), is the transition relation.

We call an abstraction α an extrapolation if there exists a simulation relation R s.t.

if α((�,Z)) = (�,Z′) then for all v ′ ∈ Z′ there exist a v ∈ Z s.t. v ′Rv [Li09]. This means

extrapolations do not introduce behavior that the un-extrapolated system cannot simu-

late. The abstraction defined by k-extrapolation is denoted by αk, while the abstraction

defined by LU-extrapolation is called αlu. Hence, αk and αlu induce finite simulation

graphs, written SGk(B) and SGlu(B).
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10.2.3 Subsumption Abstraction

While SGk(B) and SGlu(B) are finite, their size is still exponential in the number of

clocks. Therefore, we turn to the coarser inclusion/ subsumption abstraction of [DT98],

hereafter denoted subsumption abstraction. We extend the notion of subsumption to

states: a state s = (�,Z)∈ SZ is subsumed by another s′ = (�′,Z′), denoted s& s′, when

�= �′ and Z ⊆ Z′. Let R(SG(B)) = {s | s0 ⇒∗ s} denote the set of reachable states in

SG(B).

Proposition 10.1 (& is a simulation relation). If (�,Z1)& (�,Z2) and (�,Z1)⇒ (�′,Z′1)
then there exists Z′2 s.t. (�,Z2)⇒ (�′,Z′2) and (�′,Z′1)& (�′,Z′2).

Proof. By the definition of &, and the fact that⇒ is monotone w.r.t ⊆ of zones.

Definition 10.11 (Subsumption abstraction [DT98]). A subsumption abstraction α&
over a zone transition system SG(B)= (SZ ,s0,⇒Z) is a total function α& :R(SG(B))→
R(SG(B)) s.t. s& α&(s)

Note the subsumption abstraction is defined only over the reachable state space,

and is not an extrapolation, because it might introduce extra transitions that the unab-

stracted system cannot simulate. Typically α is constructed on-the-fly during analysis,

only abstracting to states that are already found to be reachable. This makes its perfor-

mance depend heavily on the search order, as finding “large” states quickly can make

the abstraction coarser [Dal+12].

SG&

SGlu
SGk

SG
T Sv

α&

αlu

α&

αk

preserves loc. reach.

finite

preserves Büchi

Figure 10.3: Abstractions.
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10.2.4 Property Preservation under Abstractions

We now consider the preservation by the abstractions above of the property of location
reachability (a location � is reachable iff s0 ⇒∗ (�, . . .)) and that of Büchi emptiness.

Proposition 10.2. For any of the abstractions α: αk [DT98], αlu [Beh+06], αk ◦
α& [DT98], and αlu ◦α& [Beh+06], it holds that:
� is reachable in T SB

v ⇐⇒ � is reachable in SGα(B)

Proposition 10.3. For any finite extrapolation [Li09] α , e.g. the abstractions αk [Tri09]
and αlu [Li09] it holds that:
L(B) = /0 ⇐⇒ L(SGα(B)) = /0

From hereon we will denote any finite extrapolation as αfin, and the associated sim-

ulation graph SGfin(B). To denote that this graph can be generated on-the-fly [VW86;

BK08; DT98], we use a next-state(s) function which returns the set of successor states

for s: {s′ ∈ Sfin | s⇒ s′}.
As a result of Proposition 10.3 we can focus on finding accepting runs in SGfin(B).

Because it is finite, any such run is represented by a lasso: s0⇒ s⇒+ s. Tripakis [Tri09]
poses the question of whether α& can be used to check Büchi emptiness. We will in-

vestigate this further in the next section.

10.3 Preservation of Büchi Emptiness under Sub-
sumption

The current section, investigates what properties are preserved by a subsumption ab-

straction α&, when applied on a finite simulation graph obtained by an extrapolation,

αfin, in the following, denoted as SG&(B) = (SGfin◦&(B)).

Proposition 10.4. For all abstractions α , s ∈ F ⇔ α(s) ∈ F (by Definition 10.9).

Proposition 10.5. An α& abstraction is safe w.r.t. Büchi emptiness:

L(B) �= /0 =⇒ L(SG&(B)) �= /0

Proof. IfL(B) �= /0, theremust be an infinite accepting path π . This path is inscribed [Tri09]

in SGfin(B), and because& is a simulation relation a similar path exists in SG&(B).

Proposition 10.5 shows that subsumption abstraction preserves Büchi emptiness in

one direction. Unfortunately, an accepting cycle in SG&(B) is not always reflected in
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s0 s1

s2 s3

s0

s2

s3

s1

Z1 :=

y− x≤ 0∧ y≤ 2

y

x

2

2
Z2 := Z3 :=

y− x = 0∧ y≤ 2

y

x

2

2

Figure 10.4: The state space SG&(B) of the model in Figure 10.1 with �1 ∈F contains 4

states (shown on the left): s0, s1 =(�1,Z1), s2 =(�2,Z2) and s3 =(�1,Z3). The graphical
representation of the zones Z1–Z3 (right) reveals that Z3 ⊆ Z1 and hence s3 & s1. As

s3& s1 and both are reachable, a subsumption abstraction is allowed tomapα&(s3)= s1,

introducing a cycle s1 ⇒ s2 ⇒ s1 in SG&(B).

SGfin(B), as Figure 10.4 illustrates. The figure visualizes SG&(B) by drawing subsumed

states inside subsuming states (e.g. s3 & s1).

However, subsumption introduces strong properties on paths and cycles to which we

devote the rest of the current section. In subsequent sections, we exploit these properties

to improve algorithms that implement the TBA emptiness check.

Lemma 10.1 (Accepting cycles under &). If SGfin(B) contains states s,s′ s.t. s leads
to an accepting cycle and s& s′, then s′ leads to an accepting cycle.

Proof. We have that s⇒∗ t ⇒+ t, and because & is a simulation relation we have the

existence of a state x s.t. t & x:

s′ t ′ · · · x⇒∗ ⇒ ⇒

s t · · · t⇒∗ ⇒ ⇒

& & & &

From x, we again have a similar path, to some x′. This sequence will eventually repeat

some x′′, because SGfin(B) is finite. It follows that all states in x′′ ⇒+ x′′ subsume states

in t ⇒+ t, hence the former cycle is also accepting (Proposition 10.4).

Lemma 10.2 (Paths under &). If SGfin(B) contains a path s⇒+ s′ containing an ac-
cepting state and s& s′, then s leads to an accepting cycle.

Proof. Because & is a simulation relation we have that s⇒+ s′ and s & s′ implies the

existence of some t such that s′ ⇒+ t and s′ & t. From t, we again obtain a similar path

to some t ′, s.t. t & t ′. Because SGfin(B) is finite, the sequence of t ′s will eventually

repeat some element x, s.t. x⇒+ · · · ⇒+ x.
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s s′ t · · · x x⇒+ ⇒+ ⇒+ ⇒+ ⇒+

s′ t t ′ · · · t ′′ x⇒+ ⇒+ ⇒+ ⇒+ ⇒+

& & & & & =

This gives us the lasso s⇒∗ x⇒+ x. It also follows that all states in x⇒+ x subsume

states in s⇒+ s′, hence the former cycle is accepting (Proposition 10.4).

10.4 Timed Nested Depth-First Search with Sub-
sumption

In the current section, we extend the classic linear-time Ndfs [Cou+92; SE05] algo-

rithm to exploit subsumption. The algorithm detects accepting cycles, the absence of

which implies Büchi emptiness. It is correct for the graph SGfin(B) according to Propo-

sition 10.3. In the following, with soundness, we mean that when Ndfs reports a cycle,

indeed an accepting cycle exists in the graph, while completeness indicates that Ndfs

always reports an accepting cycle if the graph contains one.

The Ndfs algorithm in Algorithm 10.1 consists of an outer DFS (dfsBlue) that sorts
accepting states s in DFS postorder. And an inner DFS (dfsRed) that searches for cycles
over each s, called the seed. States are maintained in 3 color sets:

1. Blue, states explored by dfsBlue,

2. Cyan, states on the stack of dfsBlue (visited but not yet explored), which are used

by dfsRed to close cycles over s early at Line 8 [SE05], and

3. Red, visited by dfsRed.

Algorithm 10.1 Ndfs

1: procedure ndfs

2: Cyan := Blue := Red := /0
3: dfsBlue(s0)
4: report no cycle
5: procedure dfsRed(s)
6: Red := Red∪{s}
7: for all t in next-state(s) do
8: if t ∈ Cyan then report cycle
9: if t �∈ Red then dfsRed(t)

10: procedure dfsBlue(s)
11: Cyan := Cyan∪{s}
12: for all t in next-state(s) do
13: if t �∈ Blue∧ t �∈ Cyan then
14: dfsBlue(t)
15: if s ∈ F then
16: dfsRed(s)
17: Blue := Blue∪{s}
18: Cyan := Cyan\{s}
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Algorithm 10.1maintains a few strong invariants, which are alreadymentioned in [Cou+92;

SE05], but for which we include a formal proof in Section B.1:

I0: At Line 13 all red states are blue. (see Corollary B.3).

I1: The only accepting state visited by dfsRed is the seed. (see Corollary B.4).

I2: Outside of dfsRed , accepting cycles are not reachable from red states. (see Corol-

lary B.5).

I3: A sufficient post-condition for dfsRed(s) is that all reachable states from s are

included in Red and no cyan state is reachable from it. (see Corollary B.6).

We now try to employ subsumption on the different colors to prune the searches, even

though we cannot use it on all colors as SG&(B) introduces additional cycles as Fig-

ure 10.4 showed. To express subsumption checks on sets we write s & S, meaning

∃s′ ∈ S : s& s′. And S& s, meaning ∃s′ ∈ S : s′ & s. At several places in Algorithm 10.1

we might apply subsumption, leading to the following options:

1. On cyan for cycle detection:

(a) t & Cyan at Line 8, or

(b) Cyan& t at Line 8.

2. On dfsBlue, by replacing t �∈ Blue∧ t �∈ Cyan at Line 13 with t �& Blue∪Cyan.

3. On the blue set (explored states), by replacing t �∈ Blue at Line 13 with t �& Blue.

4. On dfsRed , by replacing t �∈ Red at Line 9 with t �& Red.

Subsumption on cyan for cycle detection as in Item 1amakes the algorithm unsound:

cycles in SG&(B) are not always reflected in SGfin(B) (Figure 10.4). There is also no

s0

s2

s3

Cyan
Cyan

Blue

s1

Figure 10.5: Counter example to subsumption on Blue and Cyan (Item 2).
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s0

s2
s′2

s1

s′1 s3

s4

s5

Cyan

Cyan

Cyan

(a) dfsBlue(s1)

s0

s2
s′2

s1

s′1 s3

s4

s5

Blue

Cyan

Cyan

Cyan

(b) dfsBlue(s3)

s0

s2
s′2

s1

s′1 s3

s4

s5

Blue

Cyan

Cyan

Cyan∩
Red

Red

Red

Red

Red

(c) dfsRed from s3

Figure 10.6: Counter example to subsumption on Blue

hope of “unwinding” the algorithm upon detecting an accepting cycle that does not exist

in the underlying SGfin(B) without losing its linear-time complexity, as the number of

cycles can be exponential in the size of SG&(B).
If, on the other hand, we prune the blue search as in Item 2, the algorithm becomes

incomplete. Figure 10.5 shows a run of the modified Ndfs on an SGfin(B) with cycle

s3 ⇒ s2 ⇒ s3. The dfsBlue backtracked over s2 as s3 & s1 and s1 ∈ Cyan. The dfsRed
now launched from s1, will however continue to visit s3, while missing the cycle as s2 is

not cyan. We also observe that I1 is violated, indicating that the postorder on accepting

states (s3 before s1) is lost.

It is tempting therefore to use subsumption on blue only, as in Item 3. However,

Figure 10.6 shows an “animation” of a run with the modified Ndfs which is incomplete.

Here state s1 is first backtracked in the blue search as all successors are cyan (left). Then

state s1 is marked blue; The blue search backtracks to s2, proceeds to s3 and backtracks

because it finds s′1 & s1 ∈ Blue (middle). Then a red search is started from s3, which

subsumes the cyan stack (s2) and visits accepting state s4, violating I1 and missing the

accepting cycle s4 ⇒ s5 ⇒ s4.

A viable option however is to use inverse subsumption on cyan as in Item 1b. Ac-

cording to Lemma 10.1, a state that subsumes a state on the cyan stack leads to a cycle.

And as the only goal of the red search is to find a cyan state (to close an accepting cycle

over the seed), it does not rely on DFS (I3). Thus we may as well use subsumption

in the red search as in Item 4. By definition (Definition 10.11), SG&(B) contains a

“larger” state for all reachable states in SGfin(B). So in combination with Item 1b this

is sufficient to find all accepting cycles.

The strong invariant (I2) states accepting cycles are not reachable from red states, so
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Algorithm 10.2 Ndfs with subsumption on red, cycle detection, and red in dfsBlue.
1: procedure ndfs()

2: Cyan := Blue := Red := /0
3: dfsBlue(s0)
4: report no cycle
5: procedure dfsRed(s)
6: Red := Red∪{s}
7: for all t in next-state(s) do
8: if Cyan& t then report cycle
9: if t �& Red then dfsRed(t)

10: procedure dfsBlue(s)
11: Cyan := Cyan∪{s}
12: for all t in next-state(s) do
13: if (t �∈ Blue∪Cyan∧ t �& Red)
14: then dfsBlue(t)
15: if s ∈ F then
16: dfsRed(s)
17: Blue := Blue∪{s}
18: Cyan := Cyan\{s}

red states can prune the blue search. We can strengthen the condition on Line 13 to t �∈
Blue∪Cyan∪Red. However, this is of no use since by (I0), Red ⊆ Blue. Luckily, even
states subsumed by red do not lead to accepting cycles (contraposition of Lemma 10.1),

so we can use subsumption again: t �∈ Blue∪Cyan∧ t �& Red. The benefit of this can be

illustrated using Figure 10.4. Once dfsBlue backtracks over s1, we have s1,s2,s3 ∈ Red
by dfsRed at Line 16. Any hypothetical other path from s0 to a state subsumed by these

red states can be ignored.

Algorithm 10.2 shows a version of Ndfs with all correct improvements. Notice that

I2 and I3 are sufficient to conclude correctness of these modifications.

10.5 Multi-Core cndfs with Subsumption

Cndfs, fromChapter 7, is a parallel algorithm for checking Büchi emptiness. By Propo-

sition 10.3, it is correct for SGfin. In the current section, we extend Cndfswith subsump-

tion, in a similar way as we have done for the sequential Ndfs in the previous section.

In Cndfs (Algorithm 10.3 without underlined parts), each worker thread i runs a

seemingly independent dfsBluei and dfsRedi, with a local stack color Cyani, and its own

random successor ordering (indicated by the subscript i of the next-state function).

However, the workers assist each other by sharing the colors Blue and Red globally,

thus pruning each other’s search space.

The main problem that Cndfs has to solve is the loss of postorder on the accept-

ing states due to the shared blue color (similar to the effects of Item 3 as illustrated

in Figure 10.6). In the previous section, we have seen that a loss of postorder may cause

dfsRed to visit non-seed accepting states, i.e. I1 is violated. Cndfs demonstrates that

repairing such a dangerous situation is sufficient to preserve correctness (see Chapter 7).
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To detect a dangerous situation, Cndfs collects states visited by dfsRedi in a setRi
at Line 7. After completion of dfsRedi, the algorithm checksRi for non-seed accepting

states at Line 22. By waiting for these states to become red, the dangerous situation

is resolved as the blue state that caused the situation was always placed by some other

worker, which will eventually continue as shown by Proposition 7.3. Once the situation

is detected to be resolved, all states from the localRi are added to Red at Line 23.

Cndfs maintains similar invariants as Ndfs (proved in Chapter 7):

I2’ Red states do not lead to accepting cycles (see Lemma 7.1 and Proposition 7.1).

I3’ After dfsRedi(s) states reachable from s are red or inRi (see Lemma 7.2).

Because these invariants are as strong or stronger than I2 and I3, we can use subsumption

in a similar way as for Ndfs. Algorithm 10.3 underlines the changes to algorithm w.r.t.

Algorithm 7.2 in Chapter 7. We additionally have to extend the waiting procedure to

include subsumption at Line 22, because the use of subsumption in dfsRedi can cause

other workers to find “larger” states.

In the next section, we benchmark Algorithm 10.3 on timed models. The algorithm

inherits from Cndfs the property that its runtime is linear in the size of the input graph

N. However, in the worst case, all workers may visit the same states. Therefore, the

complexity of the amount of work that the algorithm performs (or the amount of power

it consumes) equals N×P, where P is the number of processors used. The random-

ized successor function next-statei however ensures that this does not happen for most

practical inputs. Experiments on over 300 examples confirmed this (see Section 7.4),

making Cndfs the current state-of-the-art parallel LTL model checking algorithm.

Algorithm 10.3 Cndfs with subsumption

1: procedure cndfs(P)
2: Blue := Red := /0
3: forall i in 1..P do Cyani := /0
4: dfsBlue1(s0)‖..‖dfsBlueP(s0)
5: report no cycle
6: procedure dfsRedi(s)
7: Ri :=Ri∪{s}
8: for all t in next-statei(s) do
9: if Cyan& t then

10: report cycle
11: if t �∈ Ri∧ t �& Red then
12: dfsRedi(t)

13: procedure dfsBluei(s)
14: Cyani := Cyani∪{s}
15: for all t in next-statei(s) do
16: if t �∈ Cyani∪Blue∧ t �& Red then
17: dfsBluei(t)
18: Blue := Blue∪{s}
19: if s ∈ F then
20: Ri := /0
21: dfsRedi(s)
22: await ∀s′ ∈ Ri∩F \{s} : s′ & Red
23: forall s′ in Ri do Red := Red∪ s′

24: Cyani := Cyani \{s}
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10.6 Experimental Evaluation

To evaluate the performance of the proposed algorithms experimentally, we imple-

mented Cndfs without (as in Chapter 7) and with subsumption (Algorithm 10.3) in

LTSmin 2.010.1. The opaal [Dal+11] tool10.2 functions as a frontend for uppaal mod-

els. Previously, we demonstrated scalablemulti-core reachability for timed automata (see

Chapter 9).

10.6.1 Experimental Setup

We benchmarked10.3 on a 48-core machine (a four-way AMD OpteronTM 6168) with a

varying number of threads, averaging results over 5 repetitions. We consider the fol-

lowing models and LTL properties:

csma10.4 is a protocol for Carrier Sense, Multiple-Access with Collision Detection with

10 nodes. We verify the property that on collisions, eventually the bus will be

active again: �((P0=bus_collision1)=⇒ ♦(P0=bus_active)).
fischer-1/210.5 implements a mutual exclusion protocol with 10 nodes; a canoni-

cal benchmark for timed automata. As in [Li09], we use the property (1):
¬((�♦k=1)∨(�♦k=0)), where k is the number of processes in their criti-

cal section. We also add a weak fairness property (2): �((�P_1=req) =⇒
(♦P_1=cs)): processes requesting infinitely often will eventually be served.

fddi10.4 models a token ring system as described in [BTY97], where a network of

10 stations are organised in a ring and can hand back the token in a synchronous

or asynchronous fashion. We verify the property from [BTY97] that every station

will eventually send asynchronousmessages: �(♦(ST1=station_z_sync)).
train-gate10.4 models a railway interlocking, with 10 trains. Trains drive onto the

interconnect until detected by sensors. There they wait until receiving a signal

for safe crossing. The property prescribes that each approaching train eventually

should be serviced: �(Train_1=Appr=⇒ (♦Train_1=Cross)).
The following command-line was used to start the LTSmin tool:

opaal2lts-mc --strategy=[A] --ltl-semantics=textbook --ltl=[f] -s28 --threads=[P] -u[0,1] [m].
This runs algorithm A on the cross product of the model m with the Büchi automaton

of formula f. It uses a fixed hash table of size 228 and P threads, and either subsumption

(-u1) or not (-u0). The option ltl-semantics selects textbook LTL semantics as defined

10.1Available as open source at: http://fmt.cs.utwente.nl/tools/ltsmin
10.2Available as open source at: http://opaal-modelchecker.com
10.3 All results are available at: http://fmt.cs.utwente.nl/tools/ltsmin/cav-2013
10.4From http://www.it.uu.se/research/group/darts/uppaal/benchmarks/
10.5As distributed with uppaal.
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in [BK08, Ch. 4]. To investigate the overhead of Cndfs, we also run the multi-core

algorithms for plain reachability on this cross product, even though this does not make

sense from a model checking perspective. To compare effects of the search order on

subsumption, we use both dfs and Bfs.

Note finally, that we are only interested here in full verification, i.e. in LTL proper-

ties that are correct w.r.t the system under verification. This is the hardest case as the

algorithm has to explore the full simulation graph. To test their on-the-fly nature, we

also tried a few incorrect LTL formula for the above models, to which the algorithms all

delivered counterexamples within a second. But with parallelism this happens almost

instantly (see Section 7.4.4).

10.6.2 Implementation

LTSmin defines a next-state function as part of its pins interface for language-independent

symbolic/parallel model checking [BPW10]. In Chapter 9, we extended pins with sub-

sumption. opaal is used to parse the uppaal models and generate C code that imple-

ments pins. The generated code uses the uppaal DBM library to implement the sim-

ulation graph semantics under LU-extrapolated zones. The LTL cross product [BK08]

is calculated by LTSmin.

LTSmin’s multi-core tool [LPW11a] stores states in one lockless hash/tree table

in shared memory (see Part II). For timed systems, this table is used to store explicit
state parts, i.e. the locations and state variables [BDL04]. The DBMs representing

zones, here referred to as the symbolic state parts, are stored in a separate lockless

hash table, while a lockless multimap structure efficiently stores full states, by linking

multiple symbolic to a single explicit state part (see Chapter 9). Global color sets of

Cndfs (Blue and Red) are encoded with extra bits in the multimap, while local colors

are maintained in local tables to reduce contention to a minimum.

Because the proof of the original Cndfs algorithm assumes that each lines in Al-

gorithm 10.3 is executed atomically, we to implement the & operation as an atomic

operation. To this end, we lock the multimap using a fine-grained spinlock as discussed

in Section 9.6.3. Because this implementation locks individual explicit state parts, it

generally allows for enough parallelism, unless there are very few explicit state parts

compared to symbolic state parts.

10.6.3 Hypothesis

Cndfs for untimed model checking scaled mostly linearly. In the timed automata set-

ting, several parameters could change this picture. In the first place, the computational
intensity increases, because the DBM operations use many calculations. In modern
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multi-core computers, this feature improves scalability, because it more closely matches

the machine’s high frequency/bandwidth ratio (see Chapter 2). On the other hand, the

lock granularity increases since a single lock now governs multiple DBMs stored in

the multimap as described in the previous section. Nonetheless, for multi-core timed

reachability, previous experiments showed almost linear scalability (see Section 9.7),

even when using other model checkers (uppaal) as a base line. On the other hand, the

Cndfs algorithm requires more queries on the multimap structure to distinguish the

different color sets.

Subsumption probably improves the absolute performance of Cndfs. We expect

that models with many clocks and constraints exhibit a better reduction than others.

Moreover, it is known [Beh05] that the reduction due to subsumption depends strongly

on the exploration order: Bfs typically results in better reductions than dfs, since

“large” states are encountered later. Cndfs might share this disadvantage with dfs.

However, as shown in Chapter 9, subsumption with random parallel dfs performs much

better than sequential dfs, which could be beneficial for the scalability of Cndfs. So

it is really hard to predict the relative performance and scalability of these algorithms,

and the effects of subsumption.

10.6.4 Experimental Results without Subsumption

We first compare the algorithms Bfs, dfs (parallel reachability) and Cndfs (accepting

cycles) without subsumption. Table 10.1 shows their sequential (P = 1) and parallel

(P = 48) runtimes (T ). Note that sequential Cndfs is just Ndfs. We show the number

of explicit state parts (|L|), full states (|R|), transitions (|⇒|), and also the number of

states visited in Cndfs (|V |). These numbers confirm the findings reported previously

for Cndfs applied to untimed systems: The sequential runtimes (P= 1) are very similar,

indicating little overhead in Cndfs. For the parallel runs (P = 48), however, the number

of states visited by Cndfs (|V |) increases due to work duplication.

To further investigate the scalability of the timed Cndfs algorithm, we plot the

speedups in Figure 10.7. Vertical bars represent the (mostly negligible) standard de-

viation over the five benchmarks. Three benchmarks exhibit linear scalability, while

train-gate and fddi show a sublinear, yet still positive, trend. For train-gate, we suspect

that this is caused by the structure of the state space. Because fddi has only 119 explicit

state parts, we attribute the poor scalability to lock contention, harming more with a

growing number of workers.
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Table 10.1: Runtimes (sec) and states counts without subsumption.

Model P |L| |R| |V |cndfs |⇒|bfs Tbfs Tdfs Tcndfs

csma 1 135449 438005 438005 1016428 26.1 26.2 27.8

csma 48 135449 438005 453658 1016428 1.0 0.9 0.9

fddi 1 119 179515 179515 314684 26.3 26.6 34.2

fddi 48 119 179515 566093 314684 1.6 0.7 2.7

fischer-1 1 521996 4987796 4987796 19481530 195.9 196.7 212.2

fischer-1 48 521996 4987796 5190490 19481530 4.8 4.6 5.1

fischer-2 1 358901 3345866 3345866 10426444 135.8 136.5 145.5

fischer-2 48 358901 3345866 3541373 10426444 3.4 3.3 3.7

train-gate 1 119989268 119989268 119989268 177201017 1608 1621 1724

train-gate 48 119989268 119989268 319766765 177201017 34.9 45.4 145.8
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10.6.5 Subsumption

Table 10.2 shows the experimental data for Bfs, dfs and Cndfs with subsumption (Al-

gorithm 10.3). The number of explicit state parts |L| is stable, since reachability of

locations is preserved under subsumption (Proposition 10.2). However, the achieved

reduction of full states depends on the search order, so we now report |R| per algo-

rithm, as a percentage of the original numbers.

We confirm [Beh05] that subsumption works best for Bfs reachability, with even

more than 30-fold reduction for fddi, but none for fischer (cf. column |R|bfs). For these

benchmarks, the reduction is correlated to the ratio X = |R|/|L|; e.g. X ≈ 1500 for fddi
and X ≈ 10 for fischer. Subsumption is much less effective with sequential dfs, but

parallel dfs improves it slightly (cf. column |R|dfs).

Cndfs benefits considerably from subsumption, but less so than Bfs: we observe

around 2-fold reduction for fddi, fischer and csma (cf. column |R|cndfs). Surprisingly,

the reduction for parallel runs of Cndfs is not better than for sequential runs. One

disadvantage of Cndfs compared to Bfs is that only red states attribute to subsumption

reduction. Probably some “large” states are never colored red. We measured that for

all benchmark models, 20%–50% of all reachable states are colored red (except for

fischer-2, which has no red states).

Subsumption decreases the runtimes for reachability: a lot for Bfs, and still con-

siderably for dfs, both in the sequential case and the parallel case, up to 48 workers.

However, subsumption is less beneficial for the running time of Cndfs (it might even

increase), but the speedup remains unaffected.

Table 10.2: Runtimes and states counts with subsumption (in % relative to Table 10.1).

Model P |R|bfs |R|dfs |R|cndfs |V |cndfs | ⇒ |bfs Tbfs Tdfs Tcndfs

csma 1 48.7 88.9 58.3 94.7 41.2 41.3 90.3 95.2

csma 48 48.7 77.5 58.3 93.6 41.2 64.5 85.3 97.8

fddi 1 3.1 3.4 50.8 53.1 3.4 4.3 4.7 132.3

fddi 48 3.1 2.4 50.8 80.1 3.4 51.0 19.5 121.0

fischer-1 1 17.9 72.4 55.2 91.9 27.0 25.6 78.7 97.3

fischer-1 48 17.9 71.1 55.2 95.9 27.0 33.1 79.6 103.0

fischer-2 1 18.6 68.5 77.5 95.8 28.7 27.0 75.3 98.9

fischer-2 48 18.6 62.7 77.5 95.8 28.7 37.4 72.5 98.3

train-gate 1 100.0 100.0 100.0 100.0 100.0 100.6 100.6 104.3

train-gate 48 100.0 100.0 100.0 100.0 100.0 101.7 83.5 83.1
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10.7 Conclusions

We implemented the first parallel model checking algorithm for liveness properties on

timed systems. We also contributed to solving the open problem [Tri09] to use in-

clusion abstraction for liveness properties. Experimentally, we established that these

techniques have their own merits: models with sufficiently many discrete states yield

great speedups of up to 40 on a 48 core machine. Models with more symbolic states

can benefit from abstraction, with 2-fold state-space reductions in several examples.

There is however also room for improvement: As the speedups correlate negatively

with the ratio of symbolic states in the state space X , we can conclude that the atomic

implementation of the & (see Section 10.6.2), in fact does constitute a bottleneck for

the parallelism. The use of non-blocking algorithms, such as those proposed in Sec-

tion 9.6.4, could further improve speedups. Finally, subsumption might be exploitable

in still different ways for liveness checking, possibly by employing other algorithms

such as Owcty.
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Additional Experimental Evaluation

11.1 Introduction

The current chapter provides stronger experimental evidence for the scalability of the

multi-core solutions that we proposed in the current thesis.

The data structures and algorithms in the previous parts have all been rigorously

benchmarked. Most of these benchmarks were however performed on a 16-core ma-

chine using DVE models from the Beem database [Pel07]. While this provides already

good evidence for scalability, in the current chapter, we still improve on it by using

real-world models written for the state-of-the-art spin model checker [Hol97a; Hol11].

Moreover, we also transition from the 16-core machine to a 48-core machine. The in-

crease of the parallelism from 16 cores to 48 cores allows us to evaluate our earlier

hypothesis that the scalability will be maintained for larger machines (Section 2.5).

To this end, we implemented a frontend for promela models for the language-

independent model checker LTSmin [LPW11a; BL13a; BPW10]. This frontend is

called SpinS, and partly reuses the parser and interpreter from SpinJa [JR10], which is

basically a reimplementation of spin in Java. The SpinS frontend also performs some

basic static analysis to provide LTSmin with the dependency information required for

partial-order reduction [Laa+13a].

SpinS generates C code from the promela models to enable high-performance

model checking with similar performance to spin. This needs to be mentioned, be-

cause if a virtual-machine or scripting language would have been used, the base case

would experience a slowdown of a factor 4-11 [JR10], as a consequence the obtained

speedups reveal little concrete about an algorithm’s scalability.
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The compact hash table from Chapter 4 is not benchmarked, as the states of many

input models are too large to fit in the table cells. Instead, we present benchmarks with

the compact tree structure from Section 4.4. These confirm that the compact tree scales

well and also delivers the optimal compression of around 4 byte per state for the models

considered here.

The following sections will detail experiments that compare our multi-core reach-

ability and multi-core LTL algorithms with similar algorithms in spin. We first show

that the performance of LTSmin and SpinS is indeed on par with spin, this establishes a

valid base-case for comparing the scalability. We then investigate the scalability. Last,

we study the state compression obtained for promela models with both the tree and the

compact tree.

11.2 Experimental Setup

To compare the performance of promela model checkers, we performed benchmarks

with spin 6.2.1 [Hol12] and LTSmin 2.011.1 [LPW11a; BL13a; BPW10] on a 48-core

machine (a four-wayAMDOpteronTM 6168). We also include someBeemmodels [Pel07]

to allow comparison with DiVinE 2.5.2 [Bar+10] (these models are written in the DVE

language and have been translated to promela). We show here a representative selec-

tion.11.2

For high performance in spin, we compiled models with parallel BFS [Hol12]: -O3
-DNOBOUNDCHECK -DSAFETY -DNOREDUCE -DBFS_MAXPROCS=48
-DBFS_PAR. By default, this enables a lossy hash compaction (hc) state storage, hence

we also compiled using -DNO_HC. DiVinE is configured as described in Chapter 2. In

LTSmin, we used a hash table, a tree table and a cleary-tree (all non-lossy). All experi-

ments use a fixed table size of 228. The corresponding command line is: prom2lts-mc
--threads=<N> --state=<cleary-tree/tree/table> -s28
--strategy=<strategy> <model>. Where the strategy is either a reachability

algorithm. e.g. BFS-like search (bfs), DFS-like search (dfs) or strict BFS (sbfs),
or a liveness algorithm such as Cndfs (cndfs). In the latter case, the additional LTL

property needs to be supplied with --ltl=<formula>. We report here only on the

reachability experiments with BFS-like search: The other strategies result in similar

performance [LPW11a]. To accommodate a master thread, spin and DiVinE are lim-

ited to 47 threads.

11.1The LTSmin website: http://fmt.cs.utwente.nl/tools/ltsmin
11.2 For complete results see http://fmt.cs.utwente.nl/tools/ltsmin/performance
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11.3 Performance and Scalability of Reachability

Table 11.1 shows the state counts and sequential runtimes of the different tools. Unfor-

tunately, the parallel BFS algorithm of spin generates more states than it should, since

its sequential DFS algorithm generates the same amount of states as LTSmin with SpinS

does (also included in the table). This is indicative of a bug in the parallel algorithm.

A perfect comparison between the parallel tools is thus not always possible. Still we

can draw conclusions from the differences of the sequential runtimes. The table namely

shows that sequentially the runtimes of LTSmin are competitive to those of spin, which

Table 11.1: Number of states and runtimes of spin’s parallel BFS (1 core) and sequential

DFS vs LTSmin/SpinS (1 core). Deviating state counts are in bold.
spin ParBFS (hc) spin ParBFS (nohc) spin LTSmin

States |S| Runtime States |S| Runtime States |S| Runtime States |S| Runtime

GARP1 1.6e8 458.0 1.6e8 820.0 4.8e7 377.1 4.8e7 175.8

Peterson4 9.5e6 17.5 9.5e6 27.1 1.3e7 23.6 1.3e7 22.3

I-Protocol2 4.0e7 77.2 4.0e7 179.0 1.4e7 28.4 1.4e7 30.0

Anderson.6 1.8e7 73.9 1.8e7 148.0 1.8e7 67.7 1.8e7 47.1

At.5 3.2e7 101.0 3.2e7 205.0 3.2e7 96.4 3.2e7 71.0

Bakery.7 2.8e7 6.3 2.8e7 86.4 2.9e7 55.1 2.9e7 60.0

Table 11.2: Runtimes of sequential and parallel runs in on 48 cores in spin (with and

without hash compaction), DiVinE and LTSmin (table/tree/Cleary-tree). The fastest

sequential and concurrent runtimes are shown in bold.
spin ParBFS DiVinE LTSmin

hc nohc table tree Cleary

1 47 1 47 1 47 1 48 1 48 1 48

GARP1 458.0 43.4 820.0 295.0 n/a n/a 187.9 5.3 175.8 4.6 196.9 5.1

Peterson4 17.5 2.6 27.1 18.3 n/a n/a 29.6 1.2 22.3 0.8 26.9 0.9

I-Protocol2 77.2 30.0 179.0 249.0 n/a n/a 43.1 1.8 30.0 1.0 31.9 1.1

Anderson.6 73.9 26.0 148.0 188.0 27.5 8.0 52.8 1.9 47.1 1.5 57.7 1.7

At.5 101.0 28.0 205.0 239.0 39.8 10.5 66.0 2.2 71.0 2.0 84.8 2.4

Bakery.7 59.8 6.3 86.4 38.4 32.2 9.0 52.0 1.8 60.0 1.7 69.4 2.0
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Figure 11.1: Peterson4 (promela)
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Figure 11.2: I-Protocol2 (promela)
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Figure 11.3: GARP1 (promela)
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Figure 11.4: Bakery.7 (DVE+promela)
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Figure 11.5: Andrsn.6 (DVE+promela)
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11.4 Performance and Scalability of LTL Checking

also holds for spin’s parallel BFS algorithm for those models that still have comparable

state counts.

In the following scalability experiments, we will limit our investigation to relative
scalability, i.e. we use the sequential runtime of the same tool (not the fastest tool) to

calculate speedups. This allows us to disregard the slight differences in the number if

states. In fact, for the scalability this is even an advantage for spin, because more states

means that more work is available for parallelization and in general results in better

speedups. The absolute runtimes are also given in Table 11.2.

Figure 11.1, Figure 11.2 and Figure 11.3 show the obtained speedups with spin and

LTSmin for models only available in promela source. Figure 11.4, Figure 11.5 and

Figure 11.6 show the obtained speedups with DiVinE, spin and LTSmin for DVE mod-

els that were translated to promela [Pel07] (the state count remains the same for these

translated versions). The speedups in LTSmin clearly dominate in the figures. Although

not entirely linear, the speedup still increases up to 48 cores. Except for Figure 11.6,

where we determined that the load balancer sometimes failed to keep up, as witnessed

by an uneven workload distribution. We expect that a modern, asynchronous load bal-

ancer implementation, as suggested in Chapter 9, solves this problem. The 48-core

runtimes show that LTSmin’s multi-core algorithms are a good addition for promela

model checking. Furthermore, we can see that (Cleary-)tree compression introduces

little or no overhead.

11.4 Performance and Scalability of LTL Checking

Figure 11.7 and Figure 11.8 show speedups of two models obtained with DiVinE’s

owcty algorithm, spin’s Piggyback (PB) algorithm [Hol12] (with hash compaction)

and LTSmin’s Cndfs (see Chapter 7) algorithm (with hash table). Cndfs shows the

best speedups and is sequentially faster than the PB algorithm (by 60%), which comes

second in terms of speedup. Three other aspects are of interest when comparing the

three algorithms: Cndfs/OWCTY are exact LTL algorithms while the PB may miss

counterexamples [Hol12], Cndfs is on-the-fly while the PB explores the whole state

space before reporting a counterexample [Hol12] and owcty typically explores a large

portion of it (see Section 7.4.3), and Cndfs is found to return even shorter counterex-

amples than a parallel BFS-based algorithm (see Section 7.4.4)! On the other hand,

the BFS-based algorithms owcty and PB can be distributed on a cluster, as DiVinE

demonstrates [Bar+10].
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11.5 Memory Usage

State compression. Wemeasured the memory usage of DiVinE, LTSmin with and

without tree compression and of spinwith andwithout Collapse compression (col) and

hash compaction. Table 11.3 shows the memory usage of all these combinations. The

first thing we noticed, is that the memory usage is almost independent of the number

of threads, showing that the model checkers add little overhead for parallel operation.

spin’s memory usage is measured by reducing the hash table size to exactly fit the state

count, hence overestimated by at most 50%. We can however conclude that tree com-

pression provides great reduction compared to full-state storage in a hash table making
lossy hash compaction redundant. And the cleary-tree improves upon this by almost a

factor of two. In [LPW11c], we compared compression methods in detail.

To further investigate the difference between the compression techniques in LTSmin,

we isolated the memory usage of the hash table, the tree table and the Cleary tree. Ta-

ble 11.4 shows these figures. We deduce that indeed the Cleary tree is able to almost

halve the memory usage compared to the normal tree table. To compare the compres-

sion ratios better, we also calculated the average memory occupied by a singly state in

the state store. These results – now with different benchmark set – comply with the ob-

servations made in Chapter 3 and Chapter 4: The tree table has an optimal compression

of 8 bytes per state and a median compression of 9.6 bytes per state, and the Cleary tree
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consistently uses 4 bytes less (see Lemma 4.2). Indeed, the experiments show that this

optimum is easily reached in practice, even for a real-world promela model like the

GARP protocol.

These are important differences, as the storage of visited states cannot be circum-

vented as explained in Section 1.4.3. Therefore, the memory occupied by the visited

states determines the maximum size of the system that we can model check. (It is true

that the size of these state stores can be further reduced by the smart use of caches, as

explained in Section 1.4.3, but this can be considered an orthogonal approach to reduce

memory consumption). For completeness, we also include the maximum size of the

BFS queue. In these case, the queues use a relatively insignificant amount of memory,

Table 11.3: Total memory usage (MB) in spin, DiVinE and LTSmin is almost indepen-

dent of number of threads. The lowest values for sequential and concurrent runs are

shown in bold.
spin DiVinE LTSmin

hc nohc col table tree Cleary

1 47 1 47 1 1 47 1 48 1 48 1 48

GARP1 1.5e4 1.6e4 1.4e5 1.4e5 4.9e4 n/a n/a 8.7e3 8.8e3 1.1e3 1.3e3 9.0e2 1.1e3
Peterson4 5.7e3 6.2e3 4.4e4 2.5e4 5.5e3 n/a n/a 1.3e3 1.3e3 1.5e2 1.6e2 1.0e2 1.0e2

I-Protocol2 1.2e4 1.2e4 1.3e5 1.3e5 4.8e4 n/a n/a 2.2e3 2.2e3 1.9e2 2.5e2 1.4e2 1.9e2
Anderson.6 1.1e4 1.1e4 1.3e5 1.3e5 5.4e4 4.5e3 4.6e3 2.1e3 2.1e3 3.2e2 4.6e2 2.5e2 3.7e2

At.5 1.2e4 1.2e4 1.3e5 1.3e5 5.4e4 4.6e3 4.9e3 3.1e3 3.1e3 7.3e2 8.0e2 6.1e2 6.6e2
Bakery.7 1.3e4 1.5e4 1.7e4 1.7e4 6.4e3 4.8e3 4.9e3 2.8e3 2.9e3 4.0e2 4.2e2 2.5e2 2.8e2

Table 11.4: Memory usage (MB) of state storage (hash table, tree, or Cleary tree) and

BFS queues in LTSmin. The lowest values for the state storage are shown in bold.

Memory Memory state storage Bytes per state

queues table tree Cleary table tree Cleary

GARP1 14.9 8363 373 179 182.0 8.0 4.0
Peterson4 0.9 1321 97 51 106.0 8.3 4.3

I-Protocol2 1.9 2176 109 56 158.0 8.1 4.1
Anderson.6 7.6 2030 139 74 114.0 8.1 4.1

At.5 18.2 2912 245 124 94.0 8.0 4.0
Bakery.7 1.9 2789 243 138 102.0 8.8 4.8
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because we store references in the queue (see Section 3.3.3). Except for some small

pieces of static data, the model checker does not use more memory.

These results translate to the setting of LTL checking, as the multi-core Ndfs al-

gorithms presented in part Part III only require a few additional bits per state to record

its color. And although local colors require a bit per state per thread in the worst case,

they are only used for coloring states on the search stack or visited states in the nested

search, which we found in practice to be very few (see Section 7.4.2).

Partial-order reduction. LTSmin implements a version ofValmari’s [Val91b] stub-
born set partial-order reduction algorithm. This algorithm was suited for the language-

independent interface of LTSmin because it lacks a notion of processes and depends

solely on a notion of structural transitions and their guards. On the other hand, the

process-oriented ample-set method [KP88b] that is implemented in spin [HP94] is of-

ten faster because transitions are far more numerous than processes. To remedy this, we

Table 11.5: POR performance in LTSmin and spin

No Partial-Order Reduction Guard-based POR Ample-set POR

LTSmin spin LTSmin spin

Model States |S| Trans |T | Time Time Δ|S| Δ|T | Mem. Time Δ|S| Δ|T | Mem. Time

GARP1 48,363,145 247,135,869 166 267 4% 1% 21 68 18% 9% 932 25.2

I-Prot.2 14,309,427 48,024,048 28 30 16% 10% 29 31 24% 16% 240 6.0

Peterson4 12,645,068 47,576,805 23 17 3% 1% 6 3 5% 2% 37 0.5

I-Prot.0 9,798,465 45,932,747 29 38 6% 2% 7 21 44% 29% 362 12.3

BRP 3,280,269 7,058,556 6.0 5.6 29% 15% 15 14 58% 39% 161 2.4

Philo 1,640,881 16,091,905 9.8 10 5% 2% 1.2 4.8 100% 100% 125 10.7

sort 659,683 3,454,988 2.8 3.8 182 181 0.0 0.3 182 182 0.3 0.0

I-Prot.3 388,929 1,161,274 1.0 0.7 14% 7% 0.9 0.9 26% 16% 6.6 0.1

I-Prot.4 95,756 204,405 0.5 0.1 28% 18% 0.5 0.6 38% 28% 2.5 0.0

Snoopy 81,013 273,781 0.6 0.2 12% 4% 0.2 0.7 17% 7% 1.2 0.0

Peterson3 45,915 128,653 0.4 0.0 8% 3% 0.1 0.4 10% 4% 0.5 0.0

SMALL1 36,970 163,058 0.5 0.0 18% 9% 0.1 0.4 48% 45% 0.9 0.0

SMALL2 7,496 32,276 0.4 0.0 19% 10% 0.0 0.4 48% 44% 0.4 0.0

X.509 9,028 35,999 0.4 0.0 10% 4% 0.0 0.4 68% 34% 1.1 0.0

DBM 5,112 20,476 0.4 0.0 100% 100% 0.1 0.5 100% 100% 0.7 0.0

SMCS 5,066 19,470 0.4 0.1 17% 7% 0.0 0.4 25% 11% 0.7 0.0
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extended the stubborn set algorithm with efficient heuristics and a necessary disabling
set [Laa+13a].

We see in Table 11.5 that the reductions obtained by LTSmin’s POR are consistently

greater than those of spin’s ample set. An expected result, as the stubborn set method

is more fine-grained than the ample-set method [Val91a]. On the other hand, this also

makes the algorithm around 8 times slower than the ample set (see for instance the

runtimes of the I-Protocol2 model compensated by the difference in the reductions).

We think this is a justifiable trade-off given that the better reductions yield nominally

competitive runtimes, e.g. for the Philo, I-Protocol and GARP1 models, and that our

method is completely language agnostic (it could easily support for example a process-

algebraic language such as mCRL2 [Gro+08], which has a different notion of processes).

Finally, we also used our multi-core algorithms with partial-order reduction to ver-

ify a different version of the GARP protocol [KLJ10]. Prior, this model had only been

verified using lossy hash compaction in spin. LTSmin with SpinS could explore the

smallest instance of the model completely, using a Cleary tree and partial-order reduc-

tion, proving that it is indeed free of deadlocks (up to the correctness of the model

checker itself). The tool explored upward of 12 billion states.

11.6 Conclusions

Wepresented additional experiments using a 48-coremachine and a new set of promela

models. The promela semantics are implemented by SpinS: a new frontend for the

LTSmin toolset. We demonstrated how the many capabilities of LTSmin can be ex-

ploited and with experiments we showed great enhancements for model checking of

promela models: through C code generation its performance is on par with spin’s,

scalability of reachability is better than spin’s latest parallel BFS algorithm, tree com-

pression reduces memory usage with a factor 5 compared to Collapse compression

and maintains performance, POR can compete with spin’s POR, exact scalable parallel

LTL is available for promela for the first time.

We also repeated – on a 48-core machine – the benchmarks of the entire Beem

database, the set of models used in Part II and Part III. These results (thousands of

benchmarks on hundreds of different models/properties) are available online11.2 and

demonstrate the same scalability and efficient memory usage as found in the current

chapter.

We aimed to implement promela’s semantics as close as possible to spin’s; the

state and transition counts for all the models discussed in the current chapter are equal to

spin’s sequential algorithms (the new parallel algorithms seems to increase the number

of states compared to spin’s own sequential algorithms).
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12.1 Summary

We proposed scalable and on-the-fly methods for multi-core model checking of both

explicit-state and timed systems.

12.1.1 Multi-Core Reachability

For the first time in model checking, we realized almost ideally scalable multi-core

reachability by using an algorithm which exploits shared memory more directly than

distributed algorithms do, by means of a shared visited set. This set is implemented by

a lockless hash table which we designed specifically for the steep memory hierarchies

of modern multi-core systems.

Our method is on-the-fly because of its flexibility with respect to the search order

used by the reachability algorithm. It also supports state compression by replacing

the hash table with a lockless tree table, which can provide sharing between states.

Due to the highly combinatorial nature of most model checking problems, the obtained

compression is often close to an optimal that consists of two integers per state in its

current implementation that is tailored to the physical hardware constraints of current

machines.

Incremental tree compression ensures that the sequential performance of the tree

table is similar to that of the hash table. And a parallel compact hash table further

reduces the compressed size per state to 1 integer. But our scalable concurrent compact

hash table can also be used in isolation for application outside of model checking, such

as in BDDs.
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All the above methods have been extensively benchmarked using the entire Beem

database, which contains hundreds of DVE models, and several real-world promela

models. The results show almost ideal scalability and confirm that compression is
close to optimal. It should be emphasized here that the (sequential) performance of

our implementation is on par with that of the state-of-the-art spin model checker, lend-

ing extra credibility to the obtained results (a sequential slowdown of a certain factor

hides communication costs and results in a similar factor of “free” speedup).

12.1.2 Multi-Core LTL Model Checking

We present the first parallel LTL model checking algorithm which is linear in the size

of the graph. Our multi-core nested depth-first search (Mc-ndfs) algorithm is based on

a novel approach of running multiple parallel depth-first searches in semi-independent

fashion. The earlier algorithms we propose, use more independence and seem to pre-

serve enough of the depth-first order to guarantee soundness and completeness, while a

later algorithm optimistically continuous searches, repairing out-of-order steps using a

waiting strategy. For all of these algorithms we presented rigorous correctness proofs.

Experiments show good scalability of Mc-ndfs, especially cndfs, which performs

better than the distributed owcty algorithm.

We show how livelocks can be checked with a parallel dfsfifo algorithm. This so-

lution supports excellent partial-order reduction and experiments confirm it has better

scalability and performance than cndfs.

12.1.3 Multi-Core Model Checking of Timed Systems

We proposed a lockless multimap to store the symbolic abstractions needed for model

checking of timed automata. With a precise locked algorithm and a revisiting non-

blocking algorithm, we realize scalable multi-core reachability for timed automata.

By porting cndfs to the timed setting, we also realize for the first time parallel LTL

model checking of timed systems. We further propose methods to exploit properties of

the coarsest time abstraction, called subsumption abstraction, in our LTL model check-

ing technique.

These methods were all implemented and experiments show good scalability, with

speedups of up to 60 times with respect to uppaal, a state-of-the-art model checker

for timed automata. The subsumption abstraction can reduce the number of states by a

factor of 2.
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12.1.4 Tool Support

All data structures and algorithms are implemented in the multi-core backend of the

LTSminmodel checker [LPW11a]. This tool is activelymaintained by the FormalMeth-

ods and Tools group at the University of Twente.

LTSmin is a language-independent model checker which currently supports Di-

VinE’s DVE language, spin’s promela language, uppaal’s timed automata, and μCRL

and mCRL2 process algebras. For the empirical evaluations of explicit-state systems in

the current thesis, we consistently employed DVE and promela models, because these

are compiled to binaries and offer fast next-state functions, yielding a realistic mea-

surement of the parallel scalability of our proposed methods. While we have checked

that μCRL and mCRL2 models scale equally well, this knowledge offers less insight

into the scalability of the methods because of their relatively slower generation of suc-

cessor states, as explained in Section 12.1.1. Although we were not interested in these

languages from our research perspective, they benefit a lot from the parallel methods

proposed here, as a user of mCRL2 is more likely to run into runtime bottlenecks.

Next to the multi-core backend, LTSmin also supports efficient BDD-based sym-

bolic model checking techniques [BPW10; BP08], a distributed backend [BPW09],

and a sequential backend using the general-state expanding algorithm [BLLL09][Pat11,

Sec. 4.6] (the latter is beneficial for tasks that are still not supported by the multi-core

backend, such as LTL checking using por). The explicit backends support incremental
hashing [NR08] via Zobrist hashing [Zob69], as explained in [LPW11a]. The sym-

bolic backend also supports multi-core (symbolic) explorations using the parallel BDD

packages Sylvan [DLP13]. All these backends are language-independent.

Language-independence is achieved through the definition of the generic Partitioned

Next-State Interface (pins). Through its pins interface, LTSmin abstracts away language-

specific features with a state vector format and semantics. At the same time it exposes

internal structure in the form of locality information through dependency matrices as

described in Definition 12.1. The locality information provided by the matrix Dk×n can

be used for example to learn the partitioned transition relation, avoiding many calls to

the next-state function or allow symbolic processing [BP08].

Definition 12.1 (pins). pins [BPW10] defines a state vector format S ≡ 〈s0,s1, . . . ,sn〉
with a fixed number of n slots and fixed domains |si|, an initial-state function:
initial-state : S, and a k-partitioned next-state function: next-state({1, . . . ,k},S) : S,
and a dependency matrix Dk×n recording read/write dependencies between transitions
and slots.

LTSmin further supports several logics to express (liveness) properties, including

LTL, CTL, CTL* ad μ-calculus. Some of these are handled in a generic fashion, trans-
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forming the state space through so-called pins2pins wrappers [DLP12]. For example,

LTL is implemented with a wrapper that synchronizes a Büchi automaton on-the-fly,

extending: the state vector with the locations of the Büchi automaton, the transition

relation with the cross product transitions, and the state-label function with a Büchi ac-

ceptance label [Pat11, Sec. 4.6]. μ calculus formulae can be combined to Parametrized
Boolean Equation Systems for which a parity game is generated [KP12], which can then

be handled by specific solvers.

To enable por, pins was extended with guards in the form of Boolean state label (see

Definition 12.2). The status of guards – enabled or disabled – can than be queried per

state, and the por algorithm can then use the additional dependency matrices to decide

how to reduce the generated transition system [Val98]. Because the por algorithm in

effect selects a subset of the next-state function, it can be implemented as a pins2pins

wrapper as well [Laa+13a].

Definition 12.2 (pins for por). The interface defining in Definition 12.1 is extended
with a state-label function: state-labels(S) : 2{1,...,g}, a guard matrix Gg×k recording
the labels that function as guards for a specific partitioned transition, and a state-label
dependency matrix Lg×n recording which state-vector slots are read by each label. Ad-
ditional matrices can be added to encode commuting transitions and enabling and dis-
abling relations between transitions and state labels.

12.2 Evaluation

The current section studies to what extent the goals of Section 1.5 have been met.

12.2.1 Scalability

The main research question posed in Section 1.5.3 is: “Can the model checking pro-
cedure scale, linearly or ideally, on modern multi-core machines?”. We can answer

this question positively, as the extensive experiments with our reachability and LTL

algorithms for both explicit-state and timed systems all show good to ideal speedups.

The experiments with our multi-core reachability algorithms show almost ideal

speedups even on a 48-core system, while their sequential performance is on par with

state-of-the-art model checkers such as spin. Experiments also reveal a significant im-

provement with respect to the prior state-of-the-art parallel solutions [BR08; HB07].

This can be explained by our more direct use of shared memory, as opposed to the dis-

tributed approaches in earlier work [BR08]. Moreover, our lockless data structures take

more care to utilize the limited bandwidth and avoid relatively slow random memory

accesses of modern multi-core machines.
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The cndfs algorithm also provides good scalability for LTL model checking prob-

lems. The algorithm is guaranteed to be linear in the size of the graph, and the first

parallel LTL checking algorithm of this kind. The worst-case speedup is 1, but experi-

ments show that this never happens for large real-world inputs. Finally, parallel dfsfifo
for livelock checking has the same properties as cndfs, but provides better scalabil-

ity (almost ideal). This can be explained by the breadth-first manner in which it treats

progress states.

The scalability of both LTL and reachability algorithms is transferred to the timed

setting because the same data structures and algorithms are used. However, for models

that exhibit more timing behavior, scalability decreases. This can be explained by the

additional locking required on the multimap that manages the symbolic representations

of the time abstractions. Unfortunately, we have no way of directly comparing these

results with earlier tools that introduced distributed model checking for timed automata.

Section 1.5.4 however defined model checking more broadly to also include systems

with hybrid and probabilistic behavior, and properties from branching-time logics such

as CTL and the modal μ-calculus: No absolute boundaries for the current research were

set upfront, only a logical order of tackling them. In the subsequent section, we will

discuss the status of these outstanding open problems.

12.2.2 Correctness

The first subquestion concerns itself with the correctness of the methods proposed here:

“Are our proposed methods for multi-core model checking provably correct?”.
In the case of the data structures proposed in the current thesis, we consistently

offered at least good arguments for their correctness. An abstracted version of the lock-

less hash table was also implemented in promela and model checked. This process

revealed one bug concerning a non-deterministic probe sequence, which we fixed in the

algorithm. The fact that the tree table is consistent and durable in its storage of state

vectors follows directly from the fact the tree can be described as an injective function

projecting each state to a unique location in its root table. Atomicity and isolation should

be guaranteed by the correctness of the hash table used to implement the tree’s root and

node tables. For the locking procedure of the compact hash table we provided a proof

of correctness that concludes linearizability.
In the case of the multi-core nested depth-first search algorithms, we provided in all

cases rigorous poofs for their soundness and completeness with respect to determining

Büchi emptiness.

In the case of the timed verification methods, we illustrated correctness by showing

the correspondences with the sequential algorithm. By contradiction, we showed that

our locking strategy of the multimap ensures the absence of revisits in the reachability
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algorithm. The non-blocking implementations of the reachability algorithms do not

exhibit this property and have not been proven correct.

Furthermore, we should note that all our proposed methods preserve the complete-

ness property of model checking. In strong contrast to methods that employ lossy ap-

proaches, such as hash compaction, bit-state hashing using Bloom filters, etc.
On the level of the implementation, we consistently validated our work by compar-

ing state counts, transition counts, number of counterexamples and verification outcome

with other tools for all input models and all performed benchmarks.

12.2.3 Compatibility

The second subquestion addresses the issue of compatibility with other state-space re-

duction methods: “Are our parallel model checking procedures compatible with other
existing approaches to tackle the state space explosion problem?” Amultitude of tech-

niques combating state explosion has been presented in Section 1.4.3. Some of these

are orthogonal to our approach and have not been considered in the current thesis. For

example, we did not study any symbolic verification techniques, nor did we focus on

any specific formalisms such as Petri nets.

For the explicit and semi-symbolic (timed) approaches that we did study, several

important reduction techniques can be identified, these are: on-the-fly model checking,
state compression and partial-order reduction. This selection is based on extensive ex-

perience in that fieldwith the (explicit-state)model checker spin [Hol08; HB07; HJG08;

Hol97b; Hol12]. Table 12.1 summarizes to what extent the contributions in the current

thesis are compatible with these techniques.

The on-the-fly behavior of our contributions is good since the use of a shared state

store allows flexible exploration orders. Parallel depth-first orders are indeed known for

excellent on-the-fly behavior in many cases [RK88]. Since the parallel LTL algorithms

use depth-first strategies, they have the potential to find accepting cycles that are deep in

the state space much faster, as our experiments confirm in Section 6.4 and Section 8.5.6.

In the case of reachability, our experiments focus on exhaustive exploration in order to

benchmark the scalability better: On-the-fly hunting for deadlocks is not tested, as the

process often terminates so quickly that it is hardly interesting (which again confirms the

usefulness of on-the-fly algorithms). The gains for finding reachability properties can

however be deduced from the experiments done with our LTL algorithms in Section 6.4.

This behavior is likewise preserved for our solutions for timed systems in Part IV.

State compression is also compatible with all our contributions. Experiments with

explicit-state reachability in Part II and timed reachability in Chapter 9 confirm this.

Extensive experiments with our multi-core LTL algorithms and tree compression are
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Table 12.1: Compatibility of the different contributions with existing state-space reduc-

tion techniques
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available online (see footnote11.2 on page 264), confirming that indeed this combination

works equally well.

Tree compression yields an optimal compression of up to 8 bytes per state as Sec-

tion 3.4 demonstrates. In practice this compression is often achieved due to the com-

binatorial nature of many inputs, which is indeed confirmed by experiments that show

a median compressed size of 9.6 bytes per state (Figure 3.13). With compact hash

tables, this median size is further reduced to 9.6− 8+ 4 = 5.6 bytes per state: Each

state requires at least one root, stored as an 8 byte key in the root table of the normal

tree; a table that is replaced by a compact hash table with 4 byte keys in the compact

tree (Section 4.4).

Coupled with the fact that incremental tree compression is often equally fast as plain

state storage, tree compression makes a good competitor to lossy hashing schemes (see

Section 1.4.3) such as hash compaction, which require around 4 byte per state [GVR99].

Though bit state hashing with Bloom filters can offer compressions of a few bits per

state, like any hashing shame, their use complicates the checking of liveness proper-

ties [BHR13]. We therefore conclude that our proposed compression scheme is even

competitive to the lossy hashing schemes.

Partial-order reduction also combines well with multi-core reachability because

the computation of ample sets is completely local for reachability properties such as

deadlocks [Laa+13a]. These results can be extended to timed systems as the partial-

order reduction techniques are similar [Min99; JLX09; Ben+98].
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The slowdown of the ample set calculation is even advantageous to the scalability

of the multi-core algorithms since Holzmann et al. [HB07] indeed showed that transi-

tion delays improve scalability. The smaller state spaces on the other hand cause lower

scalability as there is less work to be parallelized. The interesting cases, those whose

reduced state space is even very large, should however scale excellently as indeed we

could confirm experimentally.

Other safety properties require global analysis and can be handled by our solutions

for LTL model checking. Partial-order reduction however has not been achieved in our

parallel LTL algorithms as we did not find a way to realize the (global) ignoring proviso

in the parallel setting. This is the only case were we still have a negative result as shown

by the crosses in Table 12.1. Parallel dfsfifo solves this problem partly by providing a

solution for livelocks, an important subset of LTL, allowing por.

12.2.4 Empirical Evaluation

All our experiments are done with the implementation discussed in Section 12.1.4. In

all cases the experiments are repeatable because we supplied complete command lines,

input models, tool versions and hardware configurations. In some cases, the experimen-

tal data and the scripts are available online, e.g. in: Chapter 4, Chapter 9 and Chapter 10

The experiments are extensive as they cover a large set of models in the DVE lan-

guage obtained from the Beem database, which contains over 30 different types of mod-

els drawn from academic studies and games. These models come in different sizes, to-

taling the benchmark set to over 300 models. Over 400 LTL properties are included.

Further experiments with real-world promela models further confirm the results (see

Chapter 11).

12.3 Comparison with Recent Related Work

The current section discusses some more recent related work that was done after our

researches. Most of this work has already been discussed in Section 1.7.4 and will be

revisited with a more technical perspective. Other connections with related work were

recently discovered via private communication.

The spin model checker was recently refitted with a better multi-core algorithm by

Holzmann [Hol12] (see experiments in Chapter 11). The algorithm is similar to the

distributed approach presented in [BR08], but improves the communication bottleneck

by introducing N to N communication channels: each of the N worker threads has N
queues for incoming states and N queues for outgoing states. Holzmann shows for the

first time that these algorithms can also scale on modern multi-core machines. Because
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of the states are statically partitioned over the worker threads, the algorithm can in fact

be improved with separate local hash tables, instead of one shared hash table. Further-

more, complications in the implementation limit scalability with exact state storage, so

[Hol12] uses lossy hash compaction to remedy this. We implemented this algorithm

in LTSmin version 2.0 (command line option --strategy=pbfs), and can confirm

that the algorithm in fact also scales for exact reachability.

DiVinE recently also implemented compression [Bar+13]. A difference in the Di-

VinE implementation of tree compression is the choice for n-ary trees with resizing hash

tables [Sti13]. The resizing tree table is probably necessary because the distributed al-

gorithms in DiVinE require multiple (sequential) trees to be maintained by the threads

running the search algorithm. However, this doubles the size of the optimal compressed

size from 8 byte to 16 byte ([Sti13] does not use compact tables yet) because an ad-

ditional stable index needs to be stored for node entries that are now reindexed upon

resizing. The choice for an n-ary tree further increases the optimal compressed sizes,

although no analysis of the compression ratios (such as the one in Section 3.4) is pro-

vided in [Sti13]. While the n-ary tree configuration may improve the number of tree

node lookups, and thereby the runtime, it is unlikely to deliver an exponential gain as

incremental technique can do (see Section 3.3.4).

Lately, Evangelista et al. [EKP13] proposed an exact (non-lossy) compression tech-

nique based on compact hashing. The algorithm is parallel and was shown to scale on

modern machines with an implementation in an interpreted functional language. The

technique is based on storing back pointers for states that can be used to reconstruct full

states by reexploration. This guarantees a fixed size of the compressed sizes, whereas

in tree compression these depend on the combinatorial structure of the states space.

The downside is the additional cost for the reexplorations, though this could easily be

mitigated with good caching techniques [BLP03].

We furthermore found that the implementation of our tree table resembles tech-

niques often used in BDDs [Jan+06], where pointers are avoided in favor of more

compact hash table indices. The same methods were used in our parallel BDD pack-

age [DLP13], improving prior results [YO97].

The competitor to cndfs is the distributed owcty algorithm [ČP03]. The algorithm

existed a decade before cndfs, and was more recently extended with partial-order re-

duction [BBR10a] and hash compaction [BHR13]. The worst-case time complexity of

owcty that is quadratic in the size of the graph, with the nice feature that it is know

to be linear for weak properties, a substantial subset of LTL [BBR09a]. Theoretically

the algorithm is however more likely to scale good because it can be implemented with

bfs. cndfs on the other hand has a worst-case complexity that is linear in the size of the

graph. Its scalability is theoretically limited due to its use of dfs. In practice however,

we have shown that cndfs scales better than owcty. The availability of por however
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Table 12.2: Comparison between owcty and cndfs

owcty cndfs dfsfifo

Worst-case complexity
Weak LTL Linear Linear Linear12.1

Full LTL Quadratic Linear No

Scalability
Theoretical Excellent Not good Decent

Practical Good Very good Excellent

Partial-order reduction
Livelocks Decent None Excellent

Full LTL Decent None None

tilts the favor towards owcty for inputs with much commutative behavior. For livelock

properties however parallel dfsfifo is the way to go. Table 12.2 summarizes this com-

parison. Both livelocks and weak LTL properties can be identified statically [BBR09a;

Val93], hence we could essentially lump dfsfifo and cndfs together in one column.

spin was also extended with an incomplete parallel LTL algorithm called Piggy-
back [Hol12]. Its scalability was discussed in Chapter 11 and Chapter 8, and is good,

yet inferior to cndfs. However, we suspect that its reliance on hash compaction might

yield unsound results as explained in [BHR13].

Our parallel timed LTL algorithms also deal with subsumption abstraction. Kon-

nov made us aware that a similar abstraction arises in (dynamic) symmetry reduction

techniques [EW05]. This similar abstraction relation was in fact likewise combined

with LTL model checking by Konnov et al. [KZ10]. They even used the same ndfs

algorithm as a basis and proposed similar (but fewer) points in the algorithms were ab-

straction could be used. Experiments revealed however that the blowup caused by the

depth-first order did not stand up to the gains obtained by the reduction and the effort

was abandoned. It is indeed likely that owcty would yield smaller state spaces due to

its use of bfs [BHV00]. However, it is currently unknown how owcty can be combined

with subsumption abstraction.

In private communication with Henri Hansen, we learned that the redundancy of

the ignoring proviso for dfsfifo was already observed by Valmari. In “Stubborn Set

Methods for Process Algebras” [Val97], Valmari proved the more general property in

Lemma 5.1, showing that actually all minimal divergence traces are preserved without

the ignoring proviso.

12.1Only for livelocks.
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12.4 Open Questions

The first way to extend the results in the current thesis is to look at a broader definition

of model checking. Avoiding the eternal question whether branching-time or linear

temporal logics are more suitable for model checking (see Section 1.4), we could just

continue to employ the current results for solving CTL and μ-calculus checking. We

could also investigate parallel solutions for symbolic approach based on our parallel

hash table, or create a heterogeneous approach by combining distributed and multi-

core model checking. Table 12.3 illustrates this by filling in Table 1.1 in Section 1.5.3.

We will discuss some of the open questions that the table suggest and discuss related

work that may solve it already or could be used to solve it.

Table 12.3: Extending the scope of the current research
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Multi-core symbolic BDD-based model checking is less of an open problem as re-

cently van Dijk et al. [DLP13; DLP12] introduced the parallel BDD package Sylvan.
The proposed technique uses a modified version of the lockless hash table presented
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in Chapter 2 and is a direct continuation of the current project which already shows

promising results.

Important work on the problem of parallel checking of branching-time logics and hy-

brid/stochastic/probabilistic formalisms was summarized by Luecke and Brim [Cli08],

though it mainly focuses on distributed solutions. For CTL, some techniques that scale

on multi-cores have been proposed by Saad et al. [SZB12; Saa11]. For probabilistic /

stochastic systems some distributed techniques for reachability exist [Blo+08b; BH06].

But also solutions for usingmulti-cores for LTL checking [Bar+08] and for CTL∗ check-
ing [IB06] (a superset of both LTL and CTL, but a subset of μ-calculus).

We were unable to find any work on the combination of distributed and shared-

memory parallelism, as suggested by the last column in the table. But other work pro-

poses solutions for large-scale distributed model checking using bulk synchronous par-
allel (BSP) computing [GGP12a; GGP12c; GGP12b; MH00]. Such algorithms might

be useful to realize the hybrid parallelism required for exploiting massive cloud com-
puting environments.

Multi-core reachability. Due to good scalability, we consider reachability mainly

solved, though it might still be interesting to investigate:

• Although, we have enough confidence in the correctness of our lockless data

structures, it might be interesting to come up a complete machine-checkable

proof. Huisman et al. are pursuing this goal in the VerCors project [Ami+12]

and are actually using our lockless hash table as a case study [ABH13].

• Reexploration of states is not required for all model checking algorithms. Can an

imprecise algorithm deliver better scalable performance? This is hard to imagine

as the solutions presented in Part II already perform almost ideally, but there may

still be specific inputs for which other approaches are required.

Multi-core nested depth-first search. Our Mc-ndfs algorithms still pose some

interesting research directions:

• A main remaining issue is whether por can be combined efficiently with cndfs.

The benefit here is that the algorithm already uses dfs, which is traditionally used

to implement the required ignoring proviso [Val91a; EP10]. It is easy to prove

using Lemma 7.4 that indeed a cycle proviso can be implemented in the outer,

blue search by expanding a state fully upon detecting a cyan state, which must be

on the local stack. However it remains to see whether the revisiting problem can

be solved for cndfs [HPY96], whether the algorithm would still terminate, and
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whether multiple parallel searches might not cause a large over-estimation of the

proviso.

• The most interesting open problem to consider is whether there is a linear-time

Büchi emptiness (cycle-detection) algorithm that delivers guaranteed scalability.

We did not find a way to combine the sharing of the red color in the LNdfs

algorithm with the sharing of the blue color in the cndfs algorithm (which only

does late red coloring after dangerous situations have been repaired). We consider

it likely however that there exist ways to improve cndfs for specific inputs such

as weak LTL.

• We conjecture that Algorithm 5.4 (and hence also Algorithm 5.3) is correct for 2

workers without await statement. In private communication, Wan Fokkink posed

the related conjecture that the algorithms are correct for any number of workers

when the await condition is modified to count = 1 (instead of count = 0). As of

yet, neither conjecture has been proved.

• The problems for which owcty is linear-time can be identified statically by in-

specting the LTL property [BBR09a]. In the previous section, we saw how cndfs

is always linear-time, but may scale worse. It is unfortunately still unknown to

us which inputs could cause cndfs to scale bad. In the multitude of benchmarks

we presented, none could be identified. It would be interesting to investigate this

using artificial input models or even random graphs.

• Additionally, we could try tomechanize our cndfs proofs. We believe themethod

is detailed enough to be easily expressible in a theorem prover, which can auto-

matically discharge them. This research would be in line with other attempts to

proof correct implementations of formal methods [Esp+13].

• Finally, we could try to invent better fresh successor heuristics. For example, we

did not try yet to give priority to cyan states, which could speedup the backtrack-

ing and hence improve the global sharing in cndfs.

More useful optimizations. Some other optimization techniques are very useful

for specific problem instances:

• State space caching (on disk) could further increase the size of input that can be

handled by our algorithms. We suspect that there is little in the way to use current

approaches [BLP03; HW07], since our algorithms allow for flexible search orders

and load balancing.
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• Variousworks proposemethods for obtaining short counterexamples in LTLmodel

checking [GMZ04; HG08]. Normally counterexamples can be rather long due to

the depth-first nature of the search. This increases the cost of analyzing them

(usually a manual process). The combination of these works might be more chal-

lenging. On the other hand, most of these methods are based on (iterative) depth-

first searches. It could be interesting to apply our technique of parallelizing such

algorithms (see Part III). In [GMZ04], each search iteration is constrained search

to the length of the smallest counterexample found thus far. Since we know now

that parallel depth-first searches aid in finding shorter counterexamples quicker

(see Section 7.4.4), a parallel version of the algorithm in [GMZ04] could yield

excellent speedups.

• Fairness can be expressed in LTL, but at great costs. Algorithm-specific solutions

solve this muchmore efficiently [LSD09b; ČP03]. Wewonder whether cndfs can

be extended for Büchi automata with additional fairness encoding.

• Bit state hashing can easily be combinedwithmulti-core reachability as theBloom
filter data structure can be parallelized directly using atomic instructions. Parallel

Bloom filter already exist that optimize towards the caching behavior of modern

machines [PSS07]. The combination with LTL model checking seems harder,

as the algorithms need to associate data with different states, although Bloom

filters do exists for this problem, they are unsound, in addition to being incom-

plete [Cha+04].

• DBMs could be compressed just like states as is done in [Sti13].

Other directions. Can the ideas behind multi-core ndfs – basically the graph is

decorated with information on partial results from local computation to aid the global

progress – be reused to parallelize other linear-time algorithms? An interesting candi-

date is Tarjan’s algorithm for detecting strongly connected components (Sccs) [Tar72].

Like ndfs, it is based on dfs and can also be used for cycle detection [Cou99; SE05;

GS09], but has far broader applications [BCP08]. More specifically, it can be used

for the efficient checking of properties with strong fairness [LH00; ČP03]. Currently,

the only known parallel solutions for Scc detection are quadratic in the worst case,

e.g. [BCP08; Bar+11b; Kre+; LSD09a]

In a more general setting, we could consider various other graph algorithms which

rely on depth-first methods.

We did not yet study the effect of the explicit use of the NUMA architectures as we

did not find this to be a bottleneck in the current situation. In this light, it is however

interesting to note that the switch from a 16-core NUMA to a 48-core NUMA machine
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resulted in significant contention points in a load balancer implementation which all

of the sudden became a bottleneck. This problem was resolved by letting the worker

threads each do their own allocation of thread-local memory (in the previous situation,

an main thread was assigned with this task). Apparently, the operating system thus

allocates memory automatically on the local memory bank. We could further optimize

the implementation by using the NUMA library explicitly for e.g. the allocation of the

lockless hash table or tree table: The library allows the bucket array to be allocated in

distributed fashion over the different memory banks.

As identified in the previous section, it is currently unknown how owcty can be

combined with subsumption abstraction (including the abstraction used in dynamic

symmetry reduction). It could yield better state-space reductions due to its use of bfs.

12.5 Predicting the Future

Heterogeneous systems will become more common already with AMD’s latest Kaveri

microprocessors which include a completely integrated and autonomous GPU. The ad-

vance of NUMA architectures is also unstoppable. Eventually, we will arrive at Net-

work on Chip processor designs. And alternative approaches to parallel reachability,

such as proposed in Saad et al. [SZB10; SZB11; Saa11], might be necessary. They use

a dynamic way to distribute states over the available processing cores. The distribution

is controlled by a dedicated shared data structure, which could be adapted to the more

heterogeneous architecture.

Finally, a consequence ofMoore’s law is that memory hierarchies grow ever steeper.

This causes randommemory accesses to becomemore expensive, and in turn non-linear

algorithms will become more expensive. We hope that use of parallel dfs searches

might fill a gap here, although a precise evaluation of their suitability depends on a

more rigorous analysis of their scalability.
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A
Proofs for Chapter 5

A.1 Correctness Proof for Mc-ndfs

This appendix presents the full proof of Mc-ndfs, Algorithm 5.3 in Chapter 5. We

assume that each line of the code above is executed atomically. The global state of the

algorithm is the coloring of the input graph B and the program counter of each worker.

The approach presented here is different from the one in Section 5.4.3, which is based

Algorithm A.1 A Multi-core Ndfs algorithm, coloring globally red in the backtrack

1 proc mc_ndfs(s,N)
2 dfs_blue(s,1)‖..‖dfs_blue(s,N)
3 report no cycle
4 proc dfs_blue(s,i)
5 s.color[i] := cyan
6 for all t in NEXT-STATEb

i (s) do
7 if t.color[i]=white∧¬t.red
8 dfs_blue(t,i)
9 if s ∈ F

10 s.count := s.count + 1
11 dfs_red(s,i)
12 s.color[i] := blue

13 proc dfs_red(s,i)
14 s.pink[i] := true
15 for all t in NEXT-STATEr

i (s) do
16 if t.color[i]=cyan
17 report cycle & exit all
18 if ¬t.pink[i]∧¬t.red
19 dfs_red(t,i)
20 if s ∈ F
21 s.count := s.count − 1
22 await s.count = 0
23 s.red := true
24 s.pink[i] := false
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on reductio ad absurdum. Instead, the following proof solely relies on invariants that

always hold, independent of the program counters or at certain lines (pre- and post-

conditions). The main correctness result in Theorem A.1 follows directly from these

invariants.

We use the following notations: The sets Whitei, Cyani, Bluei and Pinki contain all

the states colored white, cyan, blue, and pink by worker i, and Red contains all the red

states. E.g., s.color[i] = blue, we write s ∈ Bluei. It follows from the assignments of

the respective colors to the color variable that Whitei, Cyani and Bluei are disjoint. We

distinguish between normal return and termination (exit all).
The Hoare triple {P} C {Q} [Hoa69] style notation expresses two facts at once:

(1) If pre-condition P holds before calling C, then post-condition Q holds upon return

of C, and (2) always when C is called, the pre-condition P holds. Whenever a function

reaches a report statement, it terminates after reporting, i.e. there is no normal function

return, making any post-condition vacuously true. Finally, we use the modal operator

s ∈�X to express that ∀t ∈ next-state(s) : t ∈ X .

Definition A.1 (Pre-conditionmc_ndfs). mc_ndfs adheres to the specification: {⋃i Bluei =⋃
i Cyani =

⋃
i Pinki = Red = /0∧⋃

i Whitei = S} mc_ndfs(sI) {. . .}
First, we present a few basic lemmas that allow us to reason precisely on the behavior

of the dfs.

Lemma A.1 (Pre-/post-conditions dfs_blue (1)). dfs_blue adheres to:
{∃C ⊆ S : Cyani =C∧ s �∈ Cyani} dfs_blue(s, i) {Cyani =C}
Proof. Only at Line 2 and Line 8, dfs_blue(s, i) can be called. At Line 2, by Defini-

tion A.1, Cyani = /0, hence s �∈ Cyani. At Line 8, by the condition at Line 7, s ∈Whitei,

hence s �∈ Cyani. Also, at the start of dfs_blue(s, i), we have ∃C ⊆ S : Cyani =C. We

show by induction on the number of nested dfs_blue calls n of worker i that Lemma A.1

holds with this C.

• n = 1: If Cyani =C at Line 5, then after Line 5, Cyani =C){s}. Since n = 1,
Line 8 was not reached, hence also at Line 9, Cyani = C){s}. This also holds

after Line 11, since no states are removed or added from Cyani in dfs_red. So

Cyani = (C){s})\{s}=C after Line 12.

• n = n′+ 1: Assume Lemma A.1 holds for n′ nested dfs_blue calls of worker i.
We show that it also holds for call n′ + 1. If Cyani = C at Line 5, then after

Line 5, Cyani = C){s}, and by the induction hypothesis, also after Line 8, so

Cyani = (C){s})\{s}=C after Line 12.
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Lemma A.2 (Pre-/post-condition dfs_blue (3)). dfs_blue adheres to the specification:
{s �∈ (Bluei∪Cyani)} dfs_blue(s, i) {s ∈ Bluei}

Proof. dfs_blue is only called at Line 2 and Line 8. At Line 8, t ∈ Whitei, hence t �∈
(Bluei ∪Cyani), and at Line 2, by Definition A.1, si �∈ (Bluei ∪Cyani). Finally, by

Line 12, s ∈ Bluei when dfs_blue returns.

Lemma A.3 (Pre-/post-condition dfs_red (1)). dfs_red adheres to the specification:
{∃P⊆ S : Pinki = P∧ s �∈ Pinki} dfs_red(s, i) {Pinki = P}

Proof. Only at Line 11 and Line 19, dfs_red(s, i) can be called. At Line 19, by the

condition at Line 18, s �∈ Pinki. At Line 4, by Definition A.1, Pinki = /0. At Line 11,

still Pinki = /0, since Pinki is only changed in dfs_red, hence s �∈ Pinki. Also, at the start

of dfs_red(s, i), we have ∃P ⊆ S : Pinki = P. We show by induction on the number of

nested dfs_red calls n of worker i that Lemma A.3 holds with this P.

• n = 1: If Pinki = P at Line 14, then after Line 14, Pinki = P){s}. Since n = 1,
Line 19 was not reached, hence also at Line 23, Pinki = P) {s}. So Pinki =
(P){s})\{s}= P after Line 24.

• n = n′+ 1: Assume Lemma A.3 holds for n′ nested dfs_red calls of worker i.
We show that it also holds for call n′+ 1. If Pinki = P at Line 14, then after

Line 14, Pinki = P){s}, and by the induction hypothesis, also after Line 19, so

Pinki = (P){s})\{s}= P after Line 24.

The following lemma expresses the fact that during the (local) blue search, no red

search is active.

Lemma A.4 (Pre-/post-condition dfs_blue (2)). dfs_blue adheres to the specification:
{Pinki = /0} dfs_blue(s, i) {Pinki = /0}

Proof. First we prove by induction on the number of nested dfs_blue calls n of worker i
that (1) {∃P ⊆ S : Pinki = P} dfs_blue(s, i) {Pinki = P}. Then, we show that P = /0.
At the start of dfs_blue(s, i), we have: ∃P⊆ S : Pinki = P.

• n = 1: If Pinki = P at Line 5, then since n = 1, Line 8 was not reached, hence

also at Line 9, and by Lemma A.3 after Line 11, Pinki = P.

• n = n′+ 1: Assume (1) holds for n′ nested dfs_blue calls of worker i. We show

that it also holds for call n′+ 1. If Pinki = P at Line 5, then by the induction

hypothesis, also at Line 9, and by Lemma A.3 after Line 11, Pinki = P.

293



Proofs for Chapter 5

Finally, by Definition A.1,
⋃

i Pinki = /0 at Line 1, so P = /0 for all dfs_blue calls at

Line 2. Furthermore, if Pinki = P at Line 5, then also Pinki = P at Line 8 for all nested

dfs_blue calls. Hence P = /0 for all dfs_blue calls.

Starting at the following lemma, the notation mc_ndfs(s, i)@n refers to Line n in

the code of mc_ndfs in Algorithm 5.3.

Lemma A.5. mc_ndfs(s, i)@9: s∈�(Bluei∪Cyani∪Red) is an invariant of Mc-ndfs.

Proof. At Line 9, we know for all t ∈ next-statei(s) that either (1) t �∈Whitei∨t ∈ Red,
or (2) dfs_blue(t, i) was executed at Line 8 since at Line 7, t ∈Whitei∧ t �∈ Red. If (1),
then either t �∈Whitei, hence t ∈ (Bluei∪Cyani), or t ∈ Red, hence t ∈ (Bluei∪Cyani∪
Red). If (2), then after Line 8, by Lemma A.2, t ∈ Bluei, hence t ∈ (Bluei ∪Cyani ∪
Red).

Lemma A.6. Invariantly in Mc-ndfs, for all workers, the successors of blue states are
either Red, or Blue or cyan for the same worker: ∀i : Bluei ⊆�(Bluei∪Cyani∪Red).

Proof. Only at Line 12, a state s is added to Bluei. By Lemma A.5, at Line 9, for all

t ∈ next-statei(s), we have t ∈ (Bluei∪Cyani∪Red). We can show that a state is never

removed from Bluei∪Cyani∪Red. First of all, once set to true (Line 23), s.red is never

set to false. Therefore, a state s is never removed from Red. Second of all, s.color[i] is
never set to white, hence a state s∈ (Bluei∪Cyani) is never removed from Bluei∪Cyani.

Hence t ∈ (Bluei∪Cyani∪Red) also at Line 12.

Lemma A.7. mc_ndfs(s, i)@23−24: s �∈�(Cyani) is an invariant of Mc-ndfs.

Proof. By contradiction. Say that s ∈ �(Cyani) at Line 24. Then there must exist

t ∈ next-statei(s)with t ∈Cyani. Since dfs_red does not add states to Cyani (Line 19),

we also have t ∈Cyani at Line 15. But then, the condition at Line 16 holds, and Line 17

is reached, therefore Line 24 cannot have been reached, andwe have a contradiction.

We can now reason over the color of states that dfs_red visits.

Lemma A.8 (Pre-/post-conditions dfs_red (2)). dfs_red adheres to:
{s ∈�(Bluei∪Cyani∪Red)∧ s ∈ (Bluei∪Cyani)} dfs_red(s, i) {s ∈ Red}

Proof. By induction on the number of nested dfs_red calls n by worker i. dfs_red is

only called at Line 11 and Line 19.

• n = 1: hence this dfs_red(s, i) must have been called at Line 11 in dfs_blue(s, i).
Say that at Line 5, Cyani = C. Then after Line 5, Cyani = C ) {s}, and by
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Lemma A.1, also after Line 8, Cyani = C){s}. Hence at Line 11, s ∈ Cyani,

so s ∈ (Bluei ∪Cyani). Furthermore, by Lemma A.5, at Line 9, s ∈ �(Bluei ∪
Cyani∪Red). This also holds at Line 11.

• n = n′+1: Assume Lemma A.8 holds for n′ nested dfs_red calls of worker i. We

show that it also holds for call n′+ 1. This dfs_red(s, i) must have been called

at Line 19. There, by the induction hypothesis, t ∈ (Bluei ∪Cyani ∪Red), and
t �∈ Red at Line 18, hence t ∈ (Bluei∪Cyani) at Line 19. By Lemma A.7 and the

fact that Cyani is not changed in dfs_red, t �∈ Cyani at Line 19, hence t ∈ Bluei,

therefore, by Lemma A.6, t ∈�(Bluei∪Cyani∪Red).

Finally, by Line 23, s ∈ Red after Line 23.

The red search thus only visits states that are blue or cyan. This is not surprising, as

the red search happens after the blue search backtracks and takes into account the cyan

stack of the blue search. As a consequence, red states also have these colors:

Lemma A.9. Invariantly in Mc-ndfs, red states are also blue or cyan for some worker:
Red ⊆⋃

i(Bluei∪Cyani).

Proof. Only at Line 23, s is added to Red by worker i. At Line 13, by Lemma A.8,

s ∈ (Bluei ∪Cyani). A state is never removed from Bluei ∪Cyani, since s.color[i] is
never set to white. Hence, also at Line 23, s ∈ (Bluei∪Cyani).

A basic property of dfs is that successors of backtracked states are also backtracked

or are still on the stack. The following lemma expresses this fact for the red search,

which also takes into account the cyan stack of the blue search.

Lemma A.10. Invariantly in Mc-ndfs, successors of red states are either red or pink
for some worker, but in the latter case, never cyan for that same worker:
Red ⊆�(Red∪⋃

i(Pinki \Cyani)).

Proof. Only at Line 23, s is added to Red by worker i. At Line 23, we know for all

t ∈ next-statei(s) that either (1) t ∈ Pinki∨ t ∈ Red, or (2) dfs_red(t, i) was executed

at Line 19 since at Line 18, t �∈ Pinki∧ t �∈ Red. And (3), t �∈ Cyani by Lemma A.7. If

(1), then either t ∈ Pinki \Cyani, or t ∈ Red, hence t ∈ Red∪⋃
i(Pinki \Cyani). If (2),

then after Line 19, by Lemma A.8, t ∈ Red.
We can also show that a state s is never removed from Red∪⋃

i(Pinki \Cyani). A
state is never removed from Red. It may be removed from Pinki \Cyani at Line 24 (by

removing pink) or at Line 5 (by marking a pink state cyan). However, at Line 24, s is

already red by Line 23, and by the pre-condition of Lemma A.4 a new cyan state cannot

be already pink. Hence s ∈ Red∪⋃
i(Pinki) after Line 24 and Line 5.
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Corollary A.1. mc_ndfs(s, i)@20: s ∈ �(Red ∪ (Pinki \ Cyani)) is an invariant of
mc_ndfs.

Proof. It follows from the proof LemmaA.10, that s∈�(Red∪Pinki\Cyani) at Line 23.
This also holds at Line 20 (the statements between those lines do not modify the color

sets).

Lemma A.11. Invariantly in Mc-ndfs, pick states are blue or cyan for the same worker:
∀i : Pinki ⊆ (Bluei∪Cyani).

Proof. After Line 14, s∈Pinki, and by LemmaA.8, s∈ (Bluei∪Cyani). Since s.color[i]
is never set to white, a state is never removed from Bluei∪Cyani.

Lemma A.12. Invariantly in Mc-ndfs, successors of pink states are red, or cyan or
blue for the same worker: ∀i : Pinki ⊆�(Bluei∪Cyani∪Red).

Proof. When coloring a state s pink at Line 14 in dfs_red(s, i) for some worker i, by
LemmaA.8, s∈�(Bluei∪Cyani∪Red). Furthermore, a state s∈ (Bluei∪Cyani∪Red)
is never removed fromBluei∪Cyani∪Red, because s.color[i] is never set towhite, hence
a state s ∈ (Bluei ∪Cyani) is never removed from Bluei ∪Cyani, and t.red is never set

to false, hence a state t ∈ Red is never removed from Red.

Lemma A.13. Invariantly in Mc-ndfs, blue accepting states are also red:
∀a ∈ F : a ∈⋃

i Bluei =⇒ a ∈ Red.

Proof. A state is never removed from Red. Furthermore, only at Line 12, a state is

added to Bluei by some worker i. If s ∈ F , after Line 11, by Lemma A.8, s ∈ Red.

Accepting states are special in the red search: The search is always launched starting

from an accepting seed and never visits any other accepting state. This basic insight

was used in [Cou+92] to proof the algorithm correct. Of course here we require more

detailed lemmas to ensure that the synchronization between parallel workers does not

affect this property negatively. Indeed it does not:

Lemma A.14 (Pre-/post-conditions dfs_red (4)). For all a ∈ F , dfs_red adheres to the
specification: {Pinki = /0} dfs_red(a, i) {Pinki = /0}

Proof. Only at Line 11 and Line 19 can a dfs_red be called. First, we show by contra-

diction that dfs_red(a, i) cannot be called at Line 19. Say that dfs_red(a, i) is called at

Line 19 in some dfs_red(s, i)with a∈ next-state(s). Then, at Line 13, by Lemma A.8,

a ∈ (Bluei ∪ Cyani ∪ Red). Since a ∈ F , by Lemma A.13, a ∈ (Cyani ∪ Red). If

a ∈ Cyani, the condition in Line 16 holds for a, hence Line 17 is reached, so Line 19
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is not reached, and we have a contradiction. If a ∈ Red, then the condition in Line 18

does not hold, hence Line 19 is not reached, and we have a contradition.

At Line 4, by Definition A.1, Pinki = /0. At Line 11, still Pinki = /0, Pinki is only

changed in dfs_red, and by Lemma A.3, at Line 12, also Pinki = /0.

Corollary A.2. mc_ndfs(s, i)@20: s∈F =⇒ Pinki = {s} is an invariant of Mc-ndfs.

Proof. After Line 24, since s ∈ F , by Lemma A.14, Pinki = /0. Therefore, before

Line 24, Pinki = {s} (s ∈ Pinki at Line 14 and Line 23 by Lemma A.3).

Lemma A.15. Invariantly in Mc-ndfs, pink accepting states that are not yet red are
cyan for the same worker (they are on the stack of both the blue and the red search, until
the latter backtracks): ∀i : a ∈ F ∧a ∈ (Pinki \Red) =⇒ a ∈ Cyani.

Proof. Since a ∈ Pinki, by Lemma A.11, a ∈ (Bluei∪Cyani). In fact, a �∈ Bluei, since

if a ∈ Bluei, by a ∈ F and Lemma A.13, also a ∈ Red, which is not the case. Hence

a ∈ Cyani.

Lemma A.16. mc_ndfs(s, i)@20: s ∈ F =⇒ s ∈�(Red) is an invariant of Mc-ndfs.

Proof. By Corollary A.2, Pinki = {s}. Corollary A.1 then only allows: s ∈ �(Red∪
{s}) (a self loop over s). However, s ∈ Cyani by Lemma A.15, contradicting Corol-

lary A.1 (s �∈ Cyani). Therefore, this self loop cannot exist and we have: s ∈ �(Red).

In the following lemmata, the notation s ¬Red−→ +t is used to indicate that the path

does not contain any red state. Similarly, s Pink−→ +t denotes a path that contains only

pink states.

Lemma A.17. Invariantly in Mc-ndfs, for the same worker, all cyan states can reach
all pink states: ∀i,c ∈ Cyani, p ∈ Pinki : ∃a ∈ F ∩Pinki : c→∗ a→∗ p.

Proof. At Line 5/Line 12, a successor state is added/removed to/from Cyani, thus for

all states c1,c2 ∈ Cyan, we have a path c1
Cyani−→ ∗c2. There are yet no Pinki states

(Lemma A.4).

Pinki states can only be introduced by invoking dfs_red at Line 11. There, dfs_red
is called for a ∈ F , which are immediately colored Pinki at Line 14. By Lemma A.15,

also a ∈ Cyani. Then, Lemma A.17 holds with p≡ a≡ c.
In dfs_red(s, i), dfs_red is only called for t ∈ next-state(s) at Line 19, when, by

Line 14, s ∈ Pinki. As long as a dfs_red(t, i) is not finished, also t ∈ Pinki by Line 14.

This shows that for all p ∈ Pinki, there exists a path a Pinki−→ ∗p. Since the cyan states are

connected, we also have c→∗ a→∗ p.
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The counter on accepting states ensures that they are not marked red prematurely

(while some red search is still busy):

Lemma A.18. Invariantly in Mc-ndfs, pink accepting states are non-red, except when
all works have decremented the state’s counter and are waiting for the counter to be-
come 0: ∀i,a ∈ F ∩Pinki : a �∈ Red∨dfs_red(a, i)@24.

Proof. Before a ∈ F is colored pink by dfs_red(a, i) at Line 14, its counter is first

incremented at Line 10 because by Corollary A.2 the dfs_red call was made at Line 11.

Hence, Pinki = {a}. The counter can only be decremented by Line 21, where again

Pinki = {a} by Lemma A.3. Thus only after the decrement of the counter, we can have

a ∈ Red, but at that same time a is about to be uncolored pink, because we have dfs_red
(a,i)@24.

Lemma A.19. The following invariant holds for Mc-ndfs:
∀s ∈ Red,a ∈ F \Red, : s→+ a =⇒ (∃i, p ∈ Pinki,c ∈ Cyani : p ¬Red−→ +c)
(For all red states with a path to a non-red accepting state, there is some path from a
pink to a cyan state of the same worker without red on it)

Proof. Assume towards a contradiction that s→+ a for some s ∈ Red, a ∈ F and a �∈
Red. Let s′ ∈ Red be the last red state on the path s→+ a. Then, since s′ �= a, it has a
successor t �∈ Red in this path. By Lemma A.10, we obtain t ∈ Pinki for some worker i,
so let p := t.

Note that t �= a, otherwise by LemmaA.15 t ∈Cyani and by LemmaA.10 t �∈Cyani.

So we find another successor t ′ such that s →∗ s′ → t → t ′ →∗ a. Assume towards a

contradiction that no state on the path t ′ →∗ a is in Cyani; recall that t ′ →∗ a contains no

Red states either (we started from the last red state s′ on the path). Then by LemmaA.12,

all states on t ′ →∗ a are in Bluei. But then also a ∈ Bluei and by Lemma A.13, a ∈ Red,
a contradiction. So there exists a c ∈ Cyani with s→∗ p→+ c→∗ a.

It is easy to demonstrate that the invariant is not invalidated when pink and cyan

states are removed. When p′ is uncolored at Line 24, we have p′ ∈ Red by Line 23 for

which the invariant holds (with s≡ p′). When a state is removed from cyan at Line 12,

there are no pink states by Lemma A.4 and the conclusion of the invariant was already

invalid.

Also the addition of a red state cannot invalidate the invariant. First of all, if the red

state is the accepting state, the premise of the invariant no longer holds. In all the other

cases, we have a new last red state on the path s→+ a.

In the following, we reason on the graph module red states and show that any con-

figuration of the colors in this subgraph will lead to eventual detection of an accepting

cycle if there exists one. This is necessary, a stronger invariant on red states, such as
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“red states do not lie on accepting cycles” does not hold, as Figure 5.1 shows. B′
represents B after the removal of red states, i.e. for B = (S,sI ,next-state,F), we

define B′ = (S′,s′I ,next-state′,F′), with S′ = S \Red, s′I = sI
1.1, next-state′(s) =

next-state(s) \Red, and F′ = F \Red. State colorings are affected in a similar way,

e.g. Pink′i = Pinki \Red.

Lemma A.20. The following invariant holds for Mc-ndfs:
∀a∈F : sI →∗ a∧a→+ a =⇒ ∃a′ ∈F′ : sI →∗ a′ →+ a′ ∨∃i, p∈Pink′i,c∈Cyan′i : p ¬Red−→ +c
(The büchi automaton sans red states contains a reachable accepting cycle or a non-red
path from a pink state to a cyan state for some worker).

Proof. Several cases can be identified upfront:

1 at Line 12, a state is removed from Cyani,

2 at Line 24, a state is removed from Pinki, and

3 at Line 23, a state is colored Red.

In Case 1, no path p ¬Red−→ +c with p ∈ Pinki and c ∈ Cyani is removed, because at

Line 12 there are no Pinki states (Lemma A.4).

In Case 2, at Line 24 s is removed from Pinki. By Line 23 the state is already red

and could not be part of the non-red path.

For Case 3, we have two sub cases: Case 3a, when the state s marked red is on an

accepting cycle (∃a ∈ F : a→+ s→+ a), and Case 3b, when the state s marked on a

path p ¬Red−→ ∗s ¬Red−→ ∗c with p ∈ Pink′i and c ∈ Cyan′i.
Case 3a: First note that s �≡ a, because all successors of amust be red (LemmaA.16),

hence there can be no path a ¬Red−→ +a. Therefore, after Line 23, we have s→+ a with

s ∈ Red and a �∈ Red. From this path and Lemma A.19, it follows that there is a path

p ¬Red−→ +c for some p ∈ Pinki and c ∈ Cyani, which satisfies Lemma A.20.

Case 3b: assume that s ∈ π with π ≡ p ¬Red−→ +c, p ∈ Pink′i and c ∈ Cyan′i. State

s is about to be colored Red. We witness that there must be an a′′ ∈ Pinki ∩F such

that c→∗ a′′ →∗ p (Lemma A.17). It does not matter whether a = a′′, we either have

a′′ �∈ Red or dfs_red(a′′, i)@24 by Lemma A.18. In the former case, we have a path

s→+ a′′ (again s �= a′′) with a ∈ F and s ∈ Red, and from Lemma A.19 it follows that

there is a path p ¬Red−→ +c for some p∈Pink j and c∈Cyan j, which satisfies LemmaA.20.

In the latter case, the state a′′ ∈ F ∩Pinki is about to be uncolored pink by worker j.
By Corollary A.2, Pink j = {a′′}, therefore p = a′′ contradicting the assumption that

p ¬Red−→ +c.

1.1We assume here that sI �∈ Red. If this is not the case, B \Red is a graph consisting of 0 states.
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Lemma A.21 (Post-condition mc_ndfs). mc_ndfs adheres to the specification:
{. . .} mc_ndfs(sI) {

⋃
i Cyani =

⋃
i Pinki = /0∧∀x : sI →+ x =⇒ x ∈⋃

i Bluei}
Proof. Only at Line 5, a state s is colored cyan by some worker i in dfs_blue(s, i). After

Line 2, all blue Dfss are finished, hence also dfs_blue(s, i), and by Lemma A.2, s ∈
Bluei, therefore s �∈Cyani. Furthermore, after Line 2, for all i, by LemmaA.3, Pinki = /0,
i.e.

⋃
i Pinki = /0. For all workers i, after Line 2, by Lemma A.2, sI ∈ Bluei. Finally,

by Lemma A.6 and
⋃

i Cyani = /0, Bluei ⊆ �(Bluei ∪Cyani ∪Red) = �(Bluei ∪Red).
By Lemma A.9 and

⋃
i Cyani = /0, Bluei ⊆ �(Bluei ∪

⋃
j Blue j) = �

⋃
j Blue j. Hence,

if sI →∗ x then x ∈⋃
i Bluei.

Theorem A.1 (Correctness Mc-ndfs). After mc_ndfs is finished, it holds that: C ≡
report error ⇐⇒ ∃a ∈ F .sI →∗ a∧a→+ a

Proof. We split C as follows: C ≡ C⇐= ∧C=⇒ ≡ C1 ⇐⇒ C2 and prove it in parts

(C⇐=, C=⇒ are the necessary and sufficient conditions).

C⇐=: We show that ¬C1 =⇒ ¬C2, which implies C2 =⇒ C1. First, assume that

¬C1. Then, mc_ndfs(sI ,N) returns normally (no exit all). We show by contradiction

that ¬C2 holds. Assume C2, then there exists an a ∈ F such that sI →∗ a∧ a →+

a. By Lemma A.21, a ∈ ⋃
i Bluei, and since a ∈ F , by Lemma A.13, a ∈ Red. Fi-

nally, by Lemma A.20, either there exists another a′ �∈ Red with a′ →+ a′ contradicting
Lemma A.21 and Lemma A.13, or there exists a path p→+ c for some i, p ∈ Pinki and

c ∈ Cyani. However, by Lemma A.21,
⋃

i Pinki = /0, so p cannot exist, hence we have a

contradiction.

C=⇒ : We consider it sufficiently obvious that dfs_red(s, i)@17 implies the exis-

tence of an accepting run, because of the stacks of the dfss.

The above proof shows partial correctness of Mc-ndfs. For complete correctness

it is required that the algorithm is guaranteed to terminate. If dfs_red terminated,

we can conclude termination of dfs_blue from the fact that for each worker i the set

Bluei ∪Cyani grows monotonically (blue is never removed). Eventually, all the states

are in the set and the blue search ends. The same cannot immediately be concluded for

dfs_red, because of the await condition at Line 22. Termination of this waiting state,

however, follows from the following basic observations: (1) every worker i can have at

most one outstanding pink flag on an accepting state (a ∈ F ∈ Pinki), which is unset

at Line 24 before entering the waiting state, hence when worker i is waiting, there can

be no other worker is waiting for i. Furthermore, also the shared set Red∪Pinki grows

monotonically, guaranteeing a completion of all red dfss in a finite amount of time.
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B.1 Correctness Proof and Corollaries for Ndfs

In the current section, we provide a correctness proof for plain Ndfs with cyan color

for cycle detection (Algorithm B.1). This proof serves an independent and thorough

demonstration of some corollaries about the algorithm which we used in Chapter 10.

While these corollaries can be drawn from papers on the algorithm, cf. [Cou+92; SE05],

the algorithms are slightly different and the proofs are more informal. We state these

additional corollaries at the end, and use them to explain the algorithm more intuitively.

Because the proof is written in the context of timed automata, we use the abstracted

transition relation⇒ instead of the normal relation→, but the two are interchangeable,

because we do not consider subsumption yet.

As in Section A.1, we use the modal operator in, e.g. s ∈ �X to express that

next-state(s)⊆ X . The set�X can thus be interpreted as all states that only have suc-

cessors in X : �X = {s∈S | next-state(s)⊆X}. The Hoare triple {P}C {Q} [Hoa69]

style notation expresses two facts at once: (1) If pre-condition P holds before calling

C, then post-condition Q holds upon return of C, and (2) always when C is called, the

pre-condition P holds. Whenever a function reaches a report statement, it terminates

after reporting, i.e. there is no normal function return, making any post-condition vacu-

ously true. We prove our propositions by doing induction over the number of execution

steps. If, for example, we prove that successors of blue states are either blue or cyan, it

suffices to show that this holds (1) before the algorithm starts (when all states are white)

and (2) after execution of each line where either blue or cyan is modified, assuming that

it held before. Theorem B.2 and Theorem B.3 prove Algorithm B.1’s soundness and
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Algorithm B.1 Ndfs with cyan color for cycle detection

1: procedure ndfs

2: Cyan := Blue := Red := /0
3: dfsBlue(s0)
4: report no cycle
5: procedure dfsRed(s)
6: Red := Red∪{s}
7: for all t in next-state(s) do
8: if t ∈ Cyan then report cycle
9: if t �∈ Red then dfsRed(t)

10: procedure dfsBlue(s)
11: Cyan := Cyan∪{s}
12: for all t in next-state(s) do
13: if t �∈ Blue∧ t �∈ Cyan then
14: dfsBlue(t)
15: if s ∈ F then
16: dfsRed(s)
17: Blue := Blue∪{s}
18: Cyan := Cyan\{s}

completeness (Algorithm 10.1 is a copy of that algorithm).

Algorithm B.1 uses separate color sets instead of a multi-valued color variable as

in e.g. Algorithm 5.2. It is however rather easy to see that the correctness of the latter

follows from the former as Corollary B.7 illustrates.

Lemma B.1 (Pre-/post-conditions dfsBlue). In Algorithm B.1, the following pre- and
post-conditions hold:
{Cyan =C∧ s �∈ (Blue∪Cyan)} dfsBlue(s) {Cyan =C∧ s ∈ Blue}

Proof. dfsBlue(s) is only called on white states by Line 2 and Line 13, hence s �∈ Blue∪
Cyan. By induction on the number of dfsBlue calls, we show that Cyan = C for some

C ⊆ S holds upon return of dfsBlue, if Cyan =C at call time.

n = 1: dfsBlue(s) is called at Line 10 for s �∈Cyan by Line 2 and Line 13. Let Cyan=C
at Line 11, so after Line 11, we have Cyan = C){s}. Because Line 14 is not

called, we have Cyan =C){s} at Line 18 and Cyan =C){s}\{s}=C after.

n = n′+1: Assume Lemma B.1 holds for n′ nested dfsBlue calls. We show that it also

holds for call n′+1. If Cyan =C at Line 11, then after Line 11, Cyan =C){s},
and by the induction hypothesis, also after Line 14, so Cyan= (C){s})\{s}=C
after Line 11.

Before dfsBlue(s) returns, we have s ∈ Blue at Line 17.

Lemma B.2. In Algorithm B.1, successors of blue states are blue or cyan:
Blue⊆�(Blue∪Cyan).

Proof. Initially, Blue is empty and the proposition holds. States are colored blue at

Line 17, at which point all successors t have been considered at Line 13–14. If t �∈Blue∪
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Cyan, then dfsBlue(t) is executed adding t to Blue by the post-condition of Lemma B.1.

States are only removed from cyan at Line 18, but after being colored blue at Line 17.

Corollary B.1. Lemma B.2 holds for s at Line 17, so at Line 15 also:
s ∈�(Blue∪Cyan).

Lemma B.3. In Algorithm B.1, when dfsRed is finished, then all red states have red
successors: Red ⊆�Red.

Proof. Follows from induction on red searches initiated at Line 16, which perform

reachability on non-red states.

Lemma B.4. The red search visits only blue states except for the (cyan) seed.

Proof. The search at Line 16 starts at the seed s∈F∩Cyan (by Line 11 and LemmaB.1),

with s ∈ �(Blue∪Cyan) (Corollary B.1). Before the recursive dfsRed call at Line 9,

if a successor t of s is Cyan, Algorithm B.1 terminates at Line 8. Hence, t ∈ Blue at

Line 9.

Corollary B.2. All red states are blue or cyan:
Red ⊆ (Blue∪Cyan).

Proof. If a red search was launched at Line 16 (s ∈ F), states visited by dfsRed are

colored red at Line 6. By Lemma B.4, the red search only visits blue states except for

the seed s, which is cyan. Because states are never removed from Blue∪Cyan (only

from cyan at Line 18, but this is after the state is added to blue at Line 17), always:

Red ⊆ (Blue∪Cyan).

Lemma B.5. Algorithm B.1, when dfsRed is finished, red states have blue, non-cyan
successors: Red ⊆�(Blue\Cyan).

Proof. By Corollary B.1, we have s ∈ �(Blue∪Cyan) for the initial dfsRed call at

Line 16. By Lemma B.4 and Lemma B.2, we have t ∈�(Blue∪Cyan) for the recursive
dfsRed call at Line 9. So always s ∈�(Blue∪Cyan) at Line 6. If a successor t ∈ Cyan
at Line 8, Algorithm B.1 terminates, so: s ∈�Blue\Cyan once dfsRed returns.

Cyan states can only be added in during the blue search. Assume Line 11 colors

a state t cyan, while its predecessor s ∈ Red. By Lemma B.3, also t ∈ Red. Hence by

Corollary B.2, t ∈ Blue∪Cyan, contradicting Lemma B.1. Therefore, Red ⊆�(Blue\
Cyan).

Lemma B.6. In Algorithm B.1, invariantly, blue accepting states are red:
Blue∩F ⊆ Red.
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Proof. A state s ∈F is marked blue at Line 17. There, we have s ∈ Red because Line 6

happens before Line 17 if s ∈ F (see Line 15).

Lemma B.7. Algorithm B.1 ensures that blue accepting states never lie on accepting
cycles: Blue∩F ∩Cycle = /0.

Proof. At Line 17, a state s ∈F is colored blue. By Lemma B.6, we must already have

s ∈ Red. Also, s ∈ Cyan by Line 11 and Lemma B.1. Assume towards a contradiction

that a cycle s⇒+ s exists. By induction on the length of the cycle, using Red ⊆�Red
from Lemma B.3, the immediate predecessor t of s on the cycle has to be red. However,

with s ∈ Cyan, contradicting Lemma B.5.

The following theorems demonstrate the algorithm’s correctness, because it always

terminates with a report: A cycle report entails that the graph contains an accepting

cycle (soundness) and a no cycle report entails that the graph does not contain an ac-

ceptance cycle.

Theorem B.1 (Termination). Algorithm B.1 always terminates with a report.

Proof. The color set Blue∪Cyan continuously grows, as only states are added to it

(except cyan states which are only remove after being colored blue). This reduces the

(finite) number of successors that have to be considered at Line 14 and Line 9. There-

fore, both dfsRed and dfsBlue eventually return, including the initial dfsBlue call at

Line 3, generating a report at Line 4. Unless a cycle is reported earlier at Line 8.

Theorem B.2 (Soundness). report cycle =⇒ ∃a ∈ F : s0 ⇒∗ a⇒+ a

Proof. By property of the dfs stacks: If a red search, started from an accepting seed

s ∈ F at Line 16, finds a path to a state s′ on the cyan stack, there is a path s′ ⇒∗ s.
Therefore, there is an accepting cycle: s0 ⇒∗ s⇒+ s′ ⇒∗ s.

Theorem B.3 (Completeness). report no cycle =⇒ � ∃a ∈ F : s0 ⇒∗ a⇒+ a

Proof. At Line 4, s0 ∈ Blue by Line 17, and Cyan = /0 (always Line 18 after Line 11).

By Lemma B.2, all states are blue, hence no accepting cycle exists by Lemma B.7.

The following corollaries illustrate the working of the Ndfs algorithm more intu-

itively: For each accepting state (Corollary B.4), a red search is launched to find a path

back to the cyan stack closing the accepting cycle. Th searchmay ignore states visited by

previous red searches (red states) as these do not lead to accepting cycles Corollary B.5,

making the algorithm linear.

Corollary B.3. At Line 13, Red ⊆ Blue.
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Proof. Lemma B.4 and Line 17 happens after the initial dfsRed call at Line 16.

Corollary B.4. The red search visits one single accepting state: the seed.

Proof. The search starts at Line 16 in a cyan seed s and then visits only blue states

at Line 9 (Lemma B.4). Assuming that it also visits some t ∈ F with s �= t, we have

t ∈ Red by Lemma B.6 contradicting the condition t �∈ Red at Line 9.

Corollary B.5. Outside of dfsRed , no red state leads to an accepting cycle.

Proof. Outside of dfsRed , we have Red ⊆ �Red by Lemma B.3. Assume towards a

contradiction that there exists a state s ∈ Red that leads to an accepting cycle. By

Lemma B.5, we have Red ⊆ �Blue. By induction on the lasso from s, we learn that

the cycle is both blue and red. However, this contradicts Lemma B.7.

Corollary B.6. dfsRed is not dependent on DFS order, it can be implemented with any
reachability algorithm (that marks visited states red).

Corollary B.7. The correctness of Algorithm 5.2 follows from the correctness of Algo-
rithm B.1.

Proof. The blue and cyan sets are disjoint except at Line 17. From Corollary B.2,

it follows that the color red may override blue and cyan (as happens at Line 18 and

Line 9 in Algorithm 5.2). Care has to be taken however that the converse override does

not happen (see Line 18 and Line 20 in Algorithm 5.2), and red is also interpreted as

blue/cyan (see Line 14 in Algorithm 5.2).

305



Proofs for Chapter 10

B.2 Correctness Proof for Ndfs with Subsumption

In the current section, we prove AlgorithmB.2 (a copy of Algorithm 10.2) correct, using

the same notations as in Section B.1 and also reusing some of the previous lemmas. In

fact, we only repeat those lemma that required modification now that subsumption is

added to the algorithms. Because we use subsumption, the abstracted transition relation

⇒ is used, instead of the normal relation → (the two are no longer interchangeable).

Notice that the algorithm now avoids red states during the blue search as this might

prune the search space Section 10.4.

As in Chapter 10, we write s & S to express subsumption checks on sets, meaning

∃s′ ∈ S : s& s′. And S& s, meaning ∃s′ ∈ S : s′ & s. We write X& for all states subsumed
by states in X : X& = {s | s& X}, i.e. all states that have equal or less behavior than X .

We also write X* for all states that subsume states in X : X* = {s | X & s}, i.e. all states
that have equal or more behavior than X .

Algorithm B.2 Ndfs with subsumption

1: procedure ndfs()

2: Cyan := Blue := Red := /0
3: dfsBlue(s0)
4: report no cycle
5: procedure dfsRed(s)
6: Red := Red∪{s}
7: for all t in next-state(s) do
8: if Cyan& t then report cycle
9: if t �& Red then dfsRed(t)

10: procedure dfsBlue(s)
11: Cyan := Cyan∪{s}
12: for all t in next-state(s) do
13: if (t �∈ Blue∪Cyan∧ t �& Red)
14: then dfsBlue(t)
15: if s ∈ F then
16: dfsRed(s)
17: Blue := Blue∪{s}
18: Cyan := Cyan\{s}

Lemma B.8 (Pre-/post-conditions dfsBlue). Next to the pre- and post-conditions of
Lemma B.1, Algorithm B.2 also ensures that dfsBlue is not called on states subsumed
by red: {s �∈ (Red&)} dfsBlue(s) {}

Proof. dfsBlue(s) is only called on white states by Line 2 and on states not subsumed

by red by Line 13. Hence, s �∈ Red&.

Lemma B.9. In Algorithm B.2, successors of blue states are blue, cyan or subsumed
by red: Blue⊆�(Blue∪Cyan∪Red&).

Proof. Initially, Blue is empty and the proposition holds. States are colored blue at

Line 17, at which point all successors t have been considered at Line 13–14. If t �∈
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Blue∪Cyan∪Red& then dfsBlue(t) is executed adding t to Blue by the post-condition

of Lemma B.1. States are only removed from cyan at Line 18, but after being colored

blue at Line 17.

Corollary B.8. Lemma B.9 holds for s at Line 17, so at Line 15 also:
s ∈⊆�(Blue∪Cyan∪Red&).

The following shows, that the red search never breaches the bounds of the blue

search (the cyan stack). If the blue search where to employ subsumption, this would not

be the case, as shown in Figure 10.6.

Lemma B.10. A pre-condition of dfsRed(s) is that s ∈ Blue∪Cyan and that all suc-
cessors of s are either blue or cyan, or subsumed by red:
{s ∈ Cyan∪Blue∧ s ∈�(Blue∪Cyan∪Red&)} dfsRed(s) {s ∈ Red∧ s �∈�Cyan*}.
While a post-condition is that s is red and its successors do not subsume cyan states.

Proof. By induction on the number of dfsRed calls, we show that the pre-conditions

hold.

n = 1: The initial dfsRed call must be from Line 16 with the seed s ∈ F ∩Cyan (by

Line 11 and Lemma B.1). Also, s ∈ (Blue∪Cyan∪Red&) by Corollary B.8.

n = n′+1 The nth dfsRed(t) call must be from Line 9. Assume that for the previous

n′th cal, we have s ∈ �(Blue∪Cyan∪Red&). We consider the successors t of

s, which are all processed at Line 7. Therefore, t ∈ (Blue∪Cyan∪Red&). Any

t ∈ Red& it is discarded by Line 9. If t ∈ Cyan, then Algorithm B.2 terminates

at Line 8. Hence, t ∈ Blue at Line 9 for the nth call. And by Lemma B.9, t ∈
�(Blue∪Cyan∪Red&).

The post-condition holds by Line 6 and the fact that states are never uncolored red.

In both cases of the induction, dfsRed(s) terminates when a successor t ∈ Cyan*.
Because the red search does not change the cyan set, we have s �∈�Cyan* upon return

of dfsRed .

Corollary B.9. As states are never removed from Blue∪Cyan nor from Red, it follows
from Lemma B.10 that: Red ⊆ (Blue∪Cyan).

Lemma B.11. In Algorithm B.2, when dfsRed is finished, then states subsumed by red
states have successor subsumed by red states:
{Red& ⊆�Red&} dfsBlue(s) {Red& ⊆�Red&}.
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Proof. We have s ∈ Red by Line 6 and red states are never uncolored red. For all recur-

sive calls at Line 9 t ∈ Red by the post-conditions of Lemma B.10. Otherwise, t ∈ Red&
by Line 9. Therefore, s ∈ Red∩�Red& upon return of dfsRed . The fact that subsump-

tion & is a simulation relation (Proposition 10.1) ensures that for states s′ & s, also
s′ ∈�Red&. Hence, Red& ⊆�Red& if dfsRed is completed.

In the following lemma, the notation dfsBlue(s)@n refers to Line n in the code of

Algorithm B.2.

Lemma B.12. Algorithm B.2, when dfsBlue returns, red states have non-cyan succes-
sors: dfsBlue(s)@17 =⇒ Red& ∩�Cyan* = /0.

Proof. A state s can only be marked red in dfsRed(s). It is never uncolored red. Upon

its return, s ∈ Red and s �∈ �Cyan* by Lemma B.10. Because the red search does not

tamper with the set of cyan states, we have Red∩�Cyan* = /0 up on completion of the

red search, when the control flow returned to Line 17.

Only the blue search can color states cyan. Assume there is some state r ∈ Red,
whose successor s is colored cyan at Line 11. By Lemma B.11, we have s ∈ Red&,
contradicting Lemma B.8.

It follows that Red∩�Cyan*= /0. By the fact that& is a simulation relation (Propo-

sition 10.1), we also have: Red& ∩�Cyan* = /0. Or intuitively: if red states have no

successors subsuming cyan states, all states with less behavior than the red states, can

also not subsume cyan states.

Lemma B.13. Algorithm B.2 ensures that blue accepting states never lie on accepting
cycles: Blue∩F ∩Cycle = /0.

Proof. At Line 17, a state s ∈F is colored blue. By Lemma B.6, we must already have

s ∈ Red. Also, s ∈ Cyan by Line 11 and Lemma B.8. Assume towards a contradiction

that a cycle s⇒+ s exists. By induction on the length of the cycle, using Lemma B.11,

we find that the whole cycle must be subsumed by red. Therefore, also for the prede-

cessor s′ of s on the cycle, such that s′ ⇒ s, we have s′ & Red. With s ∈ Cyan, this
contradicts Lemma B.12.

The following theorems demonstrate the algorithm’s correctness, because it always

terminates with a report: A cycle report entails that the graph contains an accepting

cycle (soundness) and a no cycle report entails that the graph does not contain an ac-

ceptance cycle.

Theorem B.4 (Termination). Algorithm B.2 always terminates with a report.
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Proof. The color sets Red and Blue∪Cyan continuously grows, as only states are added

to it (except cyan states which are only remove after being colored blue). This reduces

the – by Proposition 10.3 finite – number of successors that have to be considered at

Line 14 and Line 9. Therefore, both dfsRed and dfsBlue eventually return, including

the initial dfsBlue call at Line 3, generating a report at Line 4. Unless a cycle is reported

earlier at Line 8.

Theorem B.5 (Soundness). report cycle =⇒ ∃a ∈ F : s0 ⇒∗ a⇒+ a

Proof. By Line 8, we now find a path: s0 ⇒∗ s⇒+ s′ s.t. s& s′ containing an accepting

state on the path s⇒+ s′. By Lemma 10.2, this implies the existence of an accepting

cycle.

Theorem B.6 (Completeness). report no cycle =⇒ �a ∈ F : s0 ⇒∗ a⇒+ a

Proof. By induction on the length of the path s0 ⇒∗ sn to any reachable state sn, using

Lemma B.9 and Corollary B.9, we show first that s& Blue. For this we also use the fact

that at Line 4 Cyan = /0 by Line 2 and Lemma B.8.

n = 0: At Line 4, s0 ∈ Blue by Line 3 and the post-condition of Lemma B.1.

n = n′+1: Assume sn′ ∈ Blue. By Lemma B.9, its successor must be: sn ∈ (Blue∪
Red&), because Cyan = /0. If sn ∈ Red&, then ∃s′ * s : s∈ Red. By Corollary B.9

also s′ ∈ Blue, because Cyan = /0. Therefore, sn & Blue.

Hence, all reachable states are subsumed by blue.

Now we consider all reachable accepting states a ∈ F , again at Line 4. It holds

that a & Blue, in other words, there exists another accepting state a′ ∈ Blue, such that

a & a′. By Proposition 10.4: a,a′ ∈ F . Assume, a lies on a cycle. Since a′ ∈ Blue,
it does not lie on an accepting cycle according to Lemma B.13. This contradicts with

the contraposition of Lemma 10.1, which transliterates as: If s′ does not lead to an

accepting cycle, then any s& s′ does also not lead to an accepting cycle.
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B.3 Correctness Proof for Cndfs with Subsumption

In the current section, we prove the parallel Algorithm B.3 (a copy of Algorithm 10.3)

correct, using the same notations as in Section B.2 (also the same preliminary remarks

apply). We again reuse the notations from Chapter 10, and also use the subsumption

lemmas from that chapter. A proof for the version without subsumption was presented

in Chapter 7. The exact parts in the lemmas and proofs that changed is underlined here

(except for the cases where we use the abstracted transition relation⇒, instead of the

normal relation→).

Algorithm B.3 Multi-core CNDFS with subsumption on Red and over Cyan
1: procedure cndfs(P)
2: Blue := Red := /0
3: forall i in 1..P do Cyani := /0
4: dfsBlue1(s0)‖..‖dfsBlueP(s0)
5: report no cycle
6: procedure dfsRedi(s)
7: Ri :=Ri∪{s}
8: for all t in next-statei(s) do
9: if Cyan& t then

10: report cycle
11: if t �∈ Ri∧ t �& Red then
12: dfsRedi(t)

13: procedure dfsBluei(s)
14: Cyani := Cyani∪{s}
15: for all t in next-statei(s) do
16: if t �∈ Cyani∪Blue∧ t �& Red then
17: dfsBluei(t)
18: Blue := Blue∪{s}
19: if s ∈ F then
20: Ri := /0
21: dfsRedi(s)
22: await ∀s′ ∈ Ri∩F \{s} : s′ & Red
23: forall s′ in Ri do Red := Red∪ s′

24: Cyani := Cyani \{s}

Lemma B.14. States subsumed by red have successors subsumed by red: Red& ⊆�Red�.

Proof. Initially, there are no red states, hence the lemma holds.

States are colored red when dfsBluep@23 and are never uncolored red. The set of

states Rp that is colored at Line 23 contains all states reachable from the seed s, but
not yet subsumed by red, since dfsRedp(s) performed a DFS from s over all states not

subsumed by red. For the states subsumed by red and reachable from s, the induction

hypothesis can be applied, hence there are states subsumed by red that are reachable

from s that are not inRp. As a consequence, always Red ⊆�Red&.
The fact that subsumption& is a simulation relation (Proposition 10.1) ensures that

for states s′ & s with s ∈�Red&, also s′ ∈�Red&. Hence, it holds that Red& ⊆�Red&.
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Lemma B.15. At Line 22, the setRp invariably contains (1) the seed s, (2) all non-red
states reachable from s and also (3) all states in the set are reachable from the seed s:
dfsBluep(s)@22⇒ (s ∈ Rp∧ (∀s′ �∈ Red& : s⇒∗ s′ ⇒ s′ ∈ Rp)∧ (∀s′′ ∈ Rp ⇒ s⇒∗

s′′)).

Proof. At Line 7, we have s ∈Rp. For the rest, see proof of Lemma B.14.

Lemma B.16. The only accepting state that can be colored red at Line 23 (for the first
time) is the current seed s itself: dfsBluep(s)@23⇒ (Rp∩F)\Red& ⊆ {s}.

Proof. Assume dfsBluep(s)@23 and ∃a ∈ (F \{s}) : a ∈Rp. We show that a ∈ Red&.
By Lemma B.15,Rp contains at least s and the states reachable from s and not sub-

sumed by red. After Line 22, all non-seed accepting states inRp are subsumed by red:

(Rp∩ (F \{s}))⊆ Red&. Since, a ∈Rp∩ (F \{s}), we have: a ∈ Red&.

Proposition B.1. The initial invocation of dfsRedp(s) at Line 21 of Algorithm B.3 re-
ports a cycle if and only if the seed s belongs to a cycle.

Proof. ⇔ is split into two cases:

Case⇒: Every state s′ ∈Cyanp can reach the seed from dfsBluep(s)@21 by proper-

ties of the DFS stack. Similarly, when dfsRedp(s
′′)@10, s′′ * Cyanp is reachable from

the seed s. Therefore, there is a path: s⇒∗ s′′ for some s′′ * c ∈ Cyanp and c⇒∗ s.
By Lemma 10.2, there is an accepting cycle.

Case ⇐: assume dfsRedp(s) at Line 21 finishes normally (without cycle report),

while s lies on a cycleC. We show this leads to a contradiction. Since dfsRed avoids only

states subsumed by red (Line 11), there would have to be some r ∈C∩Red& obstructing

the search. In other words, there is a state r′ & r such that r′ ∈ Red. The state r′ can only

have been colored red at Line 23 by someworker. W.l.o.g. we investigate the first worker

dfsRedp′ to have colored r′ red. p′ started for an s′ ∈ F (dfsBluep′(s
′)@Line 21).

Since r′ is not yet red, by Lemma B.14 C∩Red& = /0. Before r is colored red, it is

first stored inRp′ . By Lemma B.15, we also haveC &Rp′ . Either there is some s′′ ∈C
such that s′ & s′′, then the cycle through s′ would have been detected since s′′ ∈ Cyanp′

(use contraposition Lemma 10.1). Or else there is no such s′′ ∈C, and then we have

{s} & (Rp′ \Red&) when dfsBluep′(s
′)@23, contradicting Lemma B.16.

Proposition B.2. Red states never subsume an accepting cycle.

Proof. Initially, there are no red states, hence the proposition holds.

When dfsBluep(s)@23, the set of statesRp is colored red. The only accepting state

to be colored red is the seed s (Lemma B.16). By Proposition B.1, this state s does not

lie on an accepting cycle. Hence, Proposition B.2 is preserved.
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It follows that there is no state subsumed by s, i.e. s′ & s, which does lie on an

accepting cycle. Otherwise, we would have a contradiction with the contraposition of

Lemma 10.1, which transliterates as: If s′ does not lead to an accepting cycle, then any

s& s′ does also not lead to an accepting cycle.

Lemma B.17. Blue states have successors that are blue, subsumed by red, or cyan for
some worker p: Blue⊆⋃

p�(Blue∪Cyanp∪Red&).

Proof. Initially there are no blue states, hence the lemma holds.

Only at Line 18, states are colored blue, after each successor t has been skipped

at Line 16 (t ∈ Cyanp ∪Blue∪Red&), or processed by dfsBluep at Line 17 (leading to

t ∈ Blue). States can be uncolored cyan (Line 24), but only after they have been colored

blue (Line 18).

Lemma B.18. A blue accepting state, that is not also Cyanp for some worker p, must
be red: ∀a ∈ (Blue∩F) : (∀p ∈ {1 . . .P} : a �∈ Cyanp)⇒ a& Red.

Proof. Assume s ∈ (F ∩Blue) and ∀p ∈ {1 . . .P} : s �∈ Cyanp. We show that s& Red.
State s can only be colored blue when dfsBluep(s)@18. There, it still retains its cyan

coloring from Line 14, it only loses this color at Line 24. But, since s ∈F , Line 23 was

reached and there a ∈Rp by Lemma B.15. Hence, s& Red at Line 24.

Proposition B.3. Algorithm 1 always terminates with a report.

Proof. The individual DFSs cannot proceed indefinitely due to a growing set of red and

blue states, and the fact that we only consider finite abstractions Proposition 10.3. So

eventually a cycle (Line 10) or no cycle is reported (Line 5). However, progress may

also halt due to the wait statement at Line 22. We now assume towards a contradiction

that a worker p is waiting indefinitely for a state a ∈ F to become subsumed by red:

dfsBluep(s)@22, s �= a and a ∈ Rp. We will show that either a will be subsumed by

red eventually, or a cycle would have been detected, contradicting the assumption that

p keeps waiting.

By LemmaB.15, a is reachable from s: s⇒+ a. And by Line 18, s∈Blue. Induction
on the path s ⇒∗ a, using Lemma B.17, tells us that: either all states are blue (1), or

there is a cyan state on this path (2), or there is a state subsumed by red on this path (3):

1. a ∈ Blue∧∀p ∈ {1 . . .P} : a �∈ Cyanp: by Lemma B.18, a ∈ Red, which con-

tradicts the assumption that p is waiting for a to become red. (Note that ∃p′ ∈
{1 . . .P} : a ∈ Cyanp′ is handled in Case 2.)

2. ∃c∈Cyanp′ : s⇒+ c⇒∗ a, then depending on the identity of worker p′, we have:
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A) p = p′: but then dfsRedp(s) would have terminated on cycle detection (C≡
s ⇒+ c ⇒+ s), except when dfsRedp did not reach c in presence of a red

state subsuming C. However, this would contradict Proposition B.2.

B) p �= p′: we show that either p′ is executing or going to execute dfsRedp′(a).
To eventually color state a red, worker p′ must not end up itself in a waiting

state: dfsBluep′(a
′)@22. First, consider the case a �= a′. We also have s⇒+

c⇒∗ a′ (stack Cyanp′ ). Hence, by Lemma B.15, also a′ ∈ Rp. Therefore,

we can assume w.l.o.g. that a = a′ and only consider dfsBluep′(a)@22. We

can repeat the reasoning process of this proof, with p ≡ p′ and s ≡ a. But

since there are finitely many workers, the chain of processes waiting for

each other eventually terminates, except the hypothetical configuration of a

cyclic waiting dependency, which we consider finally.

3. By induction on the length of the path, using Lemma B.14, we learn that a& Red.
Contradicting the assumption that p is waiting for a.

To exclude cyclic dependencies, assume n≥ 2 workers are simultaneously waiting

for each other’s seed to be colored red at Line 22. We have: dfsBlue1(s1)@22∧ ·· · ∧
dfsBluen(sn)@22∧ s2 ∈ R1 ∧ ·· · ∧ s1 ∈ Rn. This is only possible if s1 ⇒+ sn ∧ ·· · ∧
sn ⇒+ s1, hence there is a cycle: s1 ⇒+ . . .⇒+ sn ⇒+ s1. However, this contradicts

that the red DFSs (which terminate anyway) would have detected this cycle (Proposi-

tion B.1).

Theorem B.7. Algorithm B.3 reports an accepting cycle if and only if one is reachable
from s0.

Proof. By Proposition B.3, the algorithm is guaranteed to terminate with some report,

forming the basis for two cases:

Case⇒: dfsRedp(s)@10 implies that there is an accepting cycle according to Propo-

sition B.1.

Case ⇐ (consider the entire case underlined): At Line 5, we have s0 ∈ Blue and

∀p ∈ {1 . . .P} : Cyanp = /0 by Line 18 and by properties of DFS.

By induction on the length n of the path, s0⇒ sn, using LemmaB.17 and LemmaB.14,

we show that all reachable states sn are red or blue: sn ∈ (Blue∪Red&).

n = 0: At Line 4, s0 = sn. Therefore, s0,sn ∈ Blue.

n = n′+1: Assume sn′ ∈ (Blue∪Red&). If sn′ ∈ Blue, by Lemma B.9, its successor

must be: sn ∈ (Blue∪Red&), because the cyan sets are empty. If sn′ ∈ Red&, by
Lemma B.14, its successor must be: sn & Red.
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Hence, all reachable states are blue or subsumed by red.

Now we consider all reachable accepting states a ∈ F , again at Line 4. If a ∈ Blue,
then also a & Red by Lemma B.18. So all accepting states are subsumed by red: F &
Red. By Proposition B.2, it follows that there are no accepting cycles.

This concludes correctness of Algorithm B.3.
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Samenvatting

Onze moderne samenleving is in toenemende mate afhankelijk van de correcte werking

van digitale systemen. Het is geen triviale exercitie om te garanderen dat deze systemen

ook werkelijk correct volgens hun specificatie functioneren. Toch is dit essentieel voor

systemen die van levensbelang zijn, zoals een automatische piloot, kerncentrale en de

ABS in uw auto.

De hoogste mate van vertrouwen die we kunnen verkrijgen in de correctheid van een

systeem, is via wiskundig bewijs. Dit is een arbeidsintensief proces waarbij het gedrag

van het systeem eerst formeel beschreven wordt en daarna geanalyseerd wordt. Vooral

die laatste stap is tijdrovend en vereist de creativiteit van een wiskundige om te demon-

streren dat bepaalde eigenschappen blijven gelden onder de strikte wiskunderegels. Met

de ontdekking van ‘model-checking’ is die laatste taak helemaal geautomatiseerd door

het gedrag van het systeem met een computer volledig te doorzoeken.

Desondanks wordt de grootte van de systemen die we kunnen ‘model-checken’ sterk

beperkt door de hoeveelheid beschikbare rekenkracht. De oorzaak hiervan is de zo-

geheten toestandsexplosie, die ontstaat doordat deze automatische aanpak alleen maar

kleine gemechaniseerde stappen kan maken en niet zoals de wiskundige beschikt over

de creativiteit om generaliserende (denk)stappen te maken. Daarom is het doel van dit

proefschrift om de volledige rekenkracht van moderne multikerncomputers te benutten

voor de model-checking-taak (vandaar “multi-core”). De parallelle procedures die wij

presenteren, benutten alle beschikbare processorkernen, en behalen een versnelling die

proportioneel is aan het aantal kernen, oftewel ze zijn schaalbaar (vandaar “scalable”).

Dit proefschrift bereikt de efficiënte parallelisatie van een breed scala aan model-

checking-procedures in drie stappen, elk beschreven in een deel van het proefschrift:

Ten eerste passen we lockless hashtabellen aan voor ‘explicit-state reachability’, het

onderliggende zoekalgoritme dat de volledige toestandsruimte van een systeem door-
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zoekt. Met behulp van een boom (een bepaald soort datastructuur) realiseren we toe-

standscompressie, wat leidt tot een significante reductie van de hoeveelheid aan ge-

bruikt geheugen. Incrementele wijzigingen in deze boom zorgen voor vergelijkbare

performance en schaalbaarheid als de lockless hashtabel, terwijl de combinatie met een

compacte hashtabel het geheugen kan comprimeren tot ongeveer 4 bytes per toestand,

zelfs bij de opslag van meer dan 10 miljard states. Empirisch bewijs laat zien dat de

compressie heel vaak binnen de 110% van dit optimale geval ligt.

Ten tweede hebben we parallelle ‘nested depth-first search’-algoritmen ontwikkelt

om model-checking van LTL in lineaire tijd te ondersteunen. Voortbordurend op de

resultaten van onze algoritmen voor multikern-reachability laten we meerdere proces-

sen semi-onafhankelijk van elkaar door de toestandsruimte zoeken. Deze techniek is

gebaseerd op zwerm-achtige (‘swarm-based’) verificatie methoden, die lage commu-

nicatiekosten uitbuiten door gebruik te maken van een mogelijk redundante planning

(‘scheduling’) van het werk. Daarom vormt deze methode eenmogelijke oplossing voor

een toekomstscenario waarin communicatiekosten groeien met de toenemende steilheid

van de geheugen hiërarchie in computer systemen. Experimenten op huidige hardware

tonen al aan dat deze methode weinig overbodig werk verricht en ook nog goed schaalt.

Ten derde, om uiteindelijk ook de verificatie van real-time systemen te ondersteu-

nen, hebben we onze oplossingen voor de multikern-zoekalgoritmen en het checken van

LTL vertaald naar het domein van ‘timed-automata’. We hebben daarvoor een lockless

‘multimap’ ontwikkeld, die toestanden met tijd abstractie kan opslaan. Ook presenteren

we algoritmen die kunnen omgaan met de grove subsumptieabstractie voor de verifica-

tie van LTL-eigenschappen, en daardoor grotere probleeminstanties kunnen oplossen.

De schaalbaarheid, geheugencompressie en performance worden allemaal behouden in

de setting waaraan tijd is toegevoegd. Experimenten laten daarom grote vooruitgang

zien in vergelijking tot de state-of-the-art model-checker uppaal.

De bovenstaande technieken zijn allemaal geïmplementeerd in de model-checker

LTSmin. Deze is taal-onafhankelijk en leent zich daardoor uitstekend voor directe ver-

gelijkingmet andere model-checkers. We presenteren experimentele vergelijkingenmet

de state-of-the-art expliciete model-checkers spin en DiVinE. Beide implementeren

multikern-algoritmen, terwijl DiVinE ook de focus legt op gedistribueerde verificatie.

Deze experimenten tonen aan dat de voorgestelde technieken significante vooruitgang

bieden in termen van schaalbaarheid, absolute performance en geheugengebruik.

Huidige trends en voorspellingen vertellen ons dat het aantal processorkernen ex-

ponentieel toe zal nemen met de tijd (Moore’s Law). Onze resultaten zijn mogelijk in

staat te profiteren van deze trend. Of de voorgestelde methoden ook werkelijk de tand

des tijds zullen doorstaan blijft nog maar de vraag, maar vooralsnog heeft de versnelling

van onze algoritmen de 3-voudige vermeerdering in het aantal kernen kunnen bijhouden

gedurende de 4 jaren van dit onderzoek.
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